Skip to main content
Log in

Revisiting the XOR problem: a neurorobotic implementation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The exclusive-or (XOR) classification task still represents a challenge in the study of cognition since the precise neural circuit sustaining the general ability to learn nonlinear problems remains to be discovered in natural organisms. As such, this paper focuses on a neurorobotic application embedding a specific spiking neural network built to solve these types of tasks. This experiment proposes a 2-bit task (XOR) with visual compound binary images acting as inputs and a left/right action for the output. The robot learns to solve it in both virtual and real environments from an operant conditioning procedure. Furthermore, the robot also adapts its behavior from learning all other simpler associative rules, even when switching them at runtime. Finally, this study explores the impact on the neural architecture, when passing from a 2-bit to a 3-bit task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behrends A, Scheiner R (2012) Octopamine improves learning in newly emerged bees but not in old foragers. J Exp Biol 215(7):1076–1083

    Article  Google Scholar 

  2. Bi G, Poo M (1998) Activity-induced synaptic modifications in hippocampal culture: dependence on spike timing, synaptic strength and cell type. J Neurosci 18:10464–10472

    Article  Google Scholar 

  3. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46

    Article  Google Scholar 

  4. Casacuberta D, Ayala S, Vallverdú J (2012) Embodying cognition: a morphological perspective. In: Machine learning: concepts, methodologies, tools and applications. IGI Global, pp 1798–1818

  5. Cyr A, Boukadoum M, Poirier P (2009) Ai-SIMCOG: a simulator for spiking neurons and multiple animat’s behaviours. Neural Comput Appl 18(5):431–446

    Article  Google Scholar 

  6. Cyr A, Boukadoum M, Thériault F (2014) Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot 8:1–13

    Article  Google Scholar 

  7. Deisig N, Lachnit H, Giurfa M, Hellstern F (2001) Configural olfactory learning in honeybees: negative and positive patterning discrimination. Learn Mem 8(2):70–78

    Article  Google Scholar 

  8. El-Laithy K, Bogdan M (2011) A reinforcement learning framework for spiking networks with dynamic synapses. Comput Intell Neurosci 2011:4

    Article  Google Scholar 

  9. Frémaux N, Sprekeler H, Gerstner W (2010) Functional requirements for reward-modulated spike-timing-dependent plasticity. J Neurosci 30(40):13326–13337

    Article  Google Scholar 

  10. Gardner B, Sporea I, Grüning A (2015) Encoding spike patterns in multilayer spiking neural networks. arXiv preprint arXiv:1503.09129

  11. Gerstner W, Kistler W (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  12. Ghosh-Dastidar S, Adeli H (2009) Spiking neural networks. Int J Neural Syst 19(04):295–308

    Article  Google Scholar 

  13. Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of ‘sameness’ and ‘difference’in an insect. Nature 410(6831):930–933

    Article  Google Scholar 

  14. Grand C, Honey RC (2008) Solving XOR. J Exp Psychol Anim Behav Process 34(4):486

    Article  Google Scholar 

  15. Hammer M (1997) The neural basis of associative reward learning in honeybees. Trends Neurosci 20(6):245–252

    Article  Google Scholar 

  16. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  MathSciNet  Google Scholar 

  17. Jitsumori M, Ohkita M, Ushitani T (2011) The learning of basic-level categories by pigeons: the prototype effect, attention, and effects of categorization. Learn Behav 39(3):271

    Article  Google Scholar 

  18. Krichmar JL (2018) Neurorobotics—a thriving community and a promising pathway toward intelligent cognitive robots. Front Neurorobot 12:42. https://doi.org/10.3389/fnbot.2018.00042

    Article  Google Scholar 

  19. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10(9):1659–1671

    Article  Google Scholar 

  20. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  Google Scholar 

  21. Minsky M, Papert S (1969) An introduction to computational geometry. Cambridge tiass., HIT

  22. Paul C (2006) Morphological computation: a basis for the analysis of morphology and control requirements. Robot Auton Syst 54(8):619–630

    Article  Google Scholar 

  23. Pawlak V, Wickens JR, Kirkwood A, Kerr JN (2010) Timing is not everything: neuromodulation opens the STDP gate. Front Synaptic Neurosci 2:138

    Article  Google Scholar 

  24. Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, Spivey M, McRae K (2011) The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol 2:5

    Article  Google Scholar 

  25. Reljan-Delaney M, Wall J (2017) Solving the linearly inseparable XOR problem with spiking neural networks. In: 2017 computing conference. IEEE, pp 701–705

  26. Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Cognit Model 5(3):1

    MATH  Google Scholar 

  27. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    Article  Google Scholar 

  28. Seung HS (2003) Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40(6):1063–1073

    Article  Google Scholar 

  29. Smith JD, Coutinho MV, Couchman JJ (2011) The learning of exclusive-or categories by monkeys (Macaca mulatta) and humans (homo sapiens). J Exp Psychol Anim Behav Process 37(1):20

    Article  Google Scholar 

  30. Unoki S, Matsumoto Y, Mizunami M (2006) Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning. Eur J Neurosci 24(7):2031–2038

    Article  Google Scholar 

  31. Vassiliades V, Christodoulou C (2016) Behavioral plasticity through the modulation of switch neurons. Neural Netw 74:35–51

    Article  Google Scholar 

  32. Zbeda R, Nathan P (2005) Multilayer neural network with back propagation: hardware solution to learning XOR. J Comput Sci Coll 20(5):144–146

    Google Scholar 

  33. Zeigler B, Muzy A (2017) Temporal modeling of neural net input/output behaviors: the case of XOR. Systems 5(1):7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Cyr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyr, A., Thériault, F. & Chartier, S. Revisiting the XOR problem: a neurorobotic implementation. Neural Comput & Applic 32, 9965–9973 (2020). https://doi.org/10.1007/s00521-019-04522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04522-0

Keywords

Navigation