Skip to main content

Advertisement

Log in

Deep neural network-based clustering technique for secure IIoT

  • S.I. : Applying Artificial Intelligence to the Internet of Things
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The advent of Industrial Internet of Things (IIoT) has determined the proliferation of smart devices connected to the Internet and injected a vast amount of data into it, which may undergo many computational stages at several clusters. On the one hand, the benefits brought by these technologies are well known; however, in the envisaged scenario, the exposure of data, services and infrastructures to malicious attacks has definitely grown. Even a single breach on any of the links of the data–service–infrastructure chain may seriously compromise the security of the end-user application. Therefore, the logical and smart clustering while satisfying security and reliability is a key issue for IIoT networks. A novel clustering method proposed based on power demand assures security of data information in IIoT-based applications. First, security capacity of the system is calculated from mutual information of primary channel and eavesdropping channel. Then, under the maximum transmit power constraint, an optimal transmit power is found based on deep learning technique, which maximizes security capacity of the system. Finally, the network is clustered according to the calculated power demand. Experimental results accredit the proposed method has higher security and reliability, as well as lower network time overhead and power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Akpakwu GA, Silva BJ, Hancke GP et al (2018) A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6(99):3619–3647

    Article  Google Scholar 

  2. Behera TM, Mohapatra SK, Samal UC, Khan MS (2019) Hybrid heterogeneous routing scheme for improved network performance in WSNs for animal tracking. Internet Things 6:100047

    Article  Google Scholar 

  3. Mukherjee A, Goswami P, Yan Z, Yang L, Rodrigues JJPC (2019) ADAI and adaptive PSO-based resource allocation for wireless sensor networks. IEEE Access 7:131163–131171. https://doi.org/10.1109/ACCESS.2019.2940821

    Article  Google Scholar 

  4. Behera TM, Mohapatra SK, Samal UC, Khan MS, Daneshmand M, Gandomi AH (2019) I-SEP: an improved routing protocol for heterogeneous WSN for IoT based environmental monitoring. IEEE Internet Things J. https://doi.org/10.1109/jiot.2019.2940988

    Article  Google Scholar 

  5. Laubhan K, Talaat K, Riehl S et al (2017) A four-layer wireless sensor network framework for IoT applications. In: IEEE international midwest symposium on circuits & systems

  6. Course SI, Lecture P, Jo IS (2011) Physical-layer security. J Commun Netw 13(5):545-545

    Google Scholar 

  7. Mukherjee A, Fakoorian SAA, Huang J et al (2010) Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tutor 16(3):1550–1573

    Article  Google Scholar 

  8. Deng Y, Wang L, Elkashlan M et al (2017) Physical layer security in three-tier wireless sensor networks: a stochastic geometry approach. IEEE Trans Inf Forensics Secur 11(6):1128–1138

    Article  Google Scholar 

  9. Jia Z, Zou Y, Zheng B (2017) Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access 5(99):5313–5320

    Google Scholar 

  10. Mukherjee A et al (2016) HML based smart positioning of fusion center for cooperative communication in cognitive radio networks. IEEE Commun Lett 20(11):2261–2263

    Article  Google Scholar 

  11. Ghosh N, Banerjee I, Sherratt RS (2017) On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor networks. Wirel Netw 2017(8):1–17

    Google Scholar 

  12. Fernando A, Angelo B, Joel R et al (2017) Improving multidimensional wireless sensor network lifetime using pearson correlation and fractal clustering. Sensors 17(6):1317–1321

    Article  Google Scholar 

  13. Behera TM, Mohapatra SK, Samal UC, Khan MS, Daneshmand M, Gandomi AH (2019) Residual energy based cluster-head selection in WSNs for IoT application. IEEE Internet Things J 6:5132–5139

    Article  Google Scholar 

  14. Mukherjee Amrit et al (2019) Distributed artificial intelligence based cluster head power allocation in cognitive radio sensor networks. IEEE Sens Lett. https://doi.org/10.1109/LSENS.2019.2933908

    Article  Google Scholar 

  15. Yang X, Sheng M, Sun H, Wang X, Li J (2016) Spatial throughput of energy harvesting cognitive radio networks. In: International symposium on personal, indoor, and mobile radio communications (PIMRC), Valencia (Spain), pp 1–6

  16. Shakir MZ, Tang W, Rao A, Imran MA, Alouini M-S (2011) Eigen value ratio detection based on exact moments of smallest and largest eigenvalues. In: International ICST conference on cognitive radio oriented wireless networks and communications (CROWNCOM), Osaka (Japan), pp 46–50

  17. Hu Y, Niu Y, Lam J et al (2016) An energy-efficient adaptive overlapping clustering method for dynamic continuous monitoring in WSNs. IEEE Sens J 99:834–847

    Google Scholar 

  18. Goswami P et al (2019) An energy efficient clustering using firefly and HML for Optical wireless sensor network. Optik 182:181–185

    Article  Google Scholar 

  19. Han S, Xu S, Meng W et al (2018) Dense-device-enabled cooperative networks for efficient and secure transmission. IEEE Netw 32:100–106

    Article  Google Scholar 

  20. Sun L, Tourki K, Hou Y et al (2018) Safeguarding 5G networks through physical layer security technologies. Wirel Commun Mobile Comput 2018:1–2

    Google Scholar 

  21. Oggier F, Hassibi B (2007) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972

    Article  MathSciNet  Google Scholar 

  22. Shafifiee S, Ulukus S (2009) Towards the secrecy capacity of the Gaussian MIMO wire-tap channel: the 2–2–1 channel. IEEE Trans Inf Theory 55(9):4033–4039

    Article  MathSciNet  Google Scholar 

  23. Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-II: the MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532

    Article  MathSciNet  Google Scholar 

  24. Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972

    Article  MathSciNet  Google Scholar 

  25. Guerreiro AS, Fraidenraich G, Souza RD (2015) On the ergodic secrecy capacity and secrecy outage probability of the MIMOME Rayleigh wiretap channel. Trans Emerg Telecommun Technol 28(1):1–13

    Google Scholar 

  26. Ng DWK, Lo ES, Schober R (2014) Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans Wirel Commun 13(8):4599–4615

    Article  Google Scholar 

  27. Goel S, Negi R (2008) Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun 7(6):2180–2189

    Article  Google Scholar 

  28. Tsai SH, Poor HV (2014) Power allocation for artificial-noise secure MIMO precoding systems. IEEE Trans Signal Process 62(13):3479–3493

    Article  MathSciNet  Google Scholar 

  29. Lin PH, Lai SH, Lin SC et al (2013) on secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE J Sel Areas Commun 31(9):1728–1740

    Article  Google Scholar 

  30. Jian C, Chen X, Tao L et al (2017) Toward green and secure communications over massive MIMO relay networks: joint source and relay power allocation. IEEE Access 5(99):869–880

    Article  Google Scholar 

  31. Duong TQ, Hoang TM, Kundu C et al (2017) Optimal power allocation for multiuser secure communication in cooperative relaying networks. IEEE Wirel Commun Lett 5(5):516–519

    Article  Google Scholar 

  32. Sumarga KST et al (2018) Realization of a computational efficient BBU cluster for cloud RAN. J Ambient Intell Humanized Comput. https://doi.org/10.1007/s12652-018-0995-9

    Article  Google Scholar 

  33. Sumarga KST, Deepak KJ et al (2016) Thermal-aware power-efficient deadline based task allocation in multi-core processor. J Comput Sci. https://doi.org/10.1016/j.jocs.2016.11.012

    Article  Google Scholar 

  34. Wang T, Wen CK, Wang H et al (2017) Deep learning for wireless physical layer: opportunities and challenges. China Commun 14(11):92–111

    Article  Google Scholar 

  35. Zhang J, Jin S, Wen CK et al (2018) An overview of wireless transmission technology utilizing artificial intelligence. Telecommun Sci 34(8):46–55

    Google Scholar 

  36. O’Shea TJ, Hoydis J (2017) An introduction to deep learning for the physical layer. IEEE Trans Cogn Commun Netw 3(4):563–575

    Article  Google Scholar 

  37. Jiachen Y, Jipen Z, Chaofan M et al (2019) Deep learning-based edge caching for multi-cluster heterogeneous networks. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04040-z

    Article  Google Scholar 

  38. Sanguinetti L, Zappone A, Debbah M (2018) Deep learning power allocation in massive MIMO. In: 2018 52nd Asilomar conference on signals, systems, and computers

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amrit Mukherjee or Lixia Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Goswami, P., Yang, L. et al. Deep neural network-based clustering technique for secure IIoT. Neural Comput & Applic 32, 16109–16117 (2020). https://doi.org/10.1007/s00521-020-04763-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04763-4

Keywords