Skip to main content
Log in

Prediction of convective clouds formation using evolutionary neural computation techniques

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The prediction of convective clouds formation is a very important problem in different areas such as agriculture, natural hazards prevention or transport-related facilities. In this paper, we evaluate the capacity of different types of evolutionary artificial neural networks to predict the formation of convective clouds, tackling the problem as a classification task. We use data from Madrid-Barajas airport, including variables and indices derived from the Madrid-Barajas airport radiosonde station. As objective variable, we use the cloud information contained in the METAR and SPECI meteorological reports from the same airport and we consider a prediction time horizon of 12 h. The performance of different types of evolutionary artificial neural networks has been discussed and analysed, including three types of basis functions (sigmoidal unit, product unit and radial basis function) and two types of models, a mono-objective evolutionary algorithm with two objective functions and a multi-objective evolutionary algorithm optimised by the two objective functions simultaneously. We show that some of the developed neuro-evolutionary models obtain high quality solutions to this problem, due to its high unbalance characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://weather.uwyo.edu/upperair/sounding.html.

  2. Further information of the parameters considered can be found in [38, 56, 57], whereas, more information regarding the ANNs can be obtained from [37].

References

  1. Cao Z, Cai H (2016) Identification of forcing mechanisms of convective initiation in the mountain areas through high-resolution numerical simulations. Adv Atmos Sci 33(10):1104–1105

    Google Scholar 

  2. Johns RH, Doswell CA III (1992) Severe local storms forecasting. Weather Forecast 7:588–612

    Google Scholar 

  3. Browning K, Blyth A, Clark P, Corsmeier U, Morcrette C, Agner J Bamber et al (2007) The convective storm initiation project. Bull Am Meteorol Soc 8:1939–1955

    Google Scholar 

  4. Kalthoff N, Adler B, Barthlott C, Corsmeier U, Mobbs S, Crewell S (2009) The impact of convergence zones on the initiation of deep convection: a case-study from COPS. Atmos Res 93:680–690

    Google Scholar 

  5. Wang H, Luo Y, Jou BJ-D (2014) Initiation, maintenance, and properties of convection in an extreme rainfall eventduring SCMREX: observational analysis. J Geophys Res Atmos 119:13206–13232

    Google Scholar 

  6. Bouin MN, Redelsperger JL, Lebeaupin Brossier C (2017) Processes leading to deep convection and sensitivity to sea-state representation during HyMeX IOP8 heavy precipitation event. Q J R Meteorol Soc 143(707):2600–2615

    Google Scholar 

  7. Galway JG (1956) The lifted index as a predictor of latent instability. Bull Am Meteorol Soc 37:528–529

    Google Scholar 

  8. Miller RC (1975) Notes on analysis and severe storm forecasting procedures of the military weather warning center. Technical Report No. 200, AWS, USAF

  9. Moncrieff MW, Miller MJ (1976) A theory of organised steady convection and its transport properties. Q J R Meteorol Soc 102:373–394

    Google Scholar 

  10. Sánchez JL, Marcos JL, Dessens J, López L, Bustos C, García-Ortega E (2009) Assessing sounding-derived parameters as storm predictors in different latitudes. Atmos Res 93:446–456

    Google Scholar 

  11. Sánchez JL, López L, Bustos C, Marcos JL, Ortega EG (2007) Short-term forecast of thunderstorms in Argentina. Atmos Res 88:36–45

    Google Scholar 

  12. Púcik T, Groenemeijer P, Rýva D, Kolár M (2015) Proximity soundings of severe and non severe thunderstorms in central Europe. Mon Weather Rev 143:4805–4821

    Google Scholar 

  13. Taszarek M, Brooks HE, Czernecki B (2017) Sounding-derived parameters associated with convective hazards in Europe. Mon Wea Rev 145:1511–1528

    Google Scholar 

  14. Brooks HE, Lee JW, Graven JP (2003) The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos Res 67–68:73–94

    Google Scholar 

  15. Kaltenböck R, Diendorfer G, Dotzek N (2009) Evaluation of thunderstorm indices from ECWMF analyses, lightning data and severe storm reports. Atmos Res 93:381–396

    Google Scholar 

  16. Bertolotto PA, Roggero G (2016) Comparison of instability indices from COSMO-I7 and ECMWF-IFS analyses over the Piedmont Region, Italy, and new modifications to the K Index. Meteorol Appl 23:605–613

    Google Scholar 

  17. Gascon E, Merino A, Sanchez JL, Fernández-González S, García-Ortega E, López L, Hermida L (2015) Spatial distribution of thermodynamic conditions of severe storms in southwestern Europe. Atmos Res 164–165:194–209

    Google Scholar 

  18. Zhuge X, Zou X (2018) Summertime convective initiation nowcasting over Southeastern China based on advanced Himawari Imager observations. J Meteorol Soc Jpn 96:337–353

    Google Scholar 

  19. Mecikalski J, Bedka K (2006) Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon Weather Rev 134:49–78

    Google Scholar 

  20. Merk D, Zinner T (2013) Detection of convective initiation using Meteosat SEVIRI implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM. Atmos Meas Tech 6:1903–1918

    Google Scholar 

  21. Mecikalski J, Williams JK, Jewett CP, Ahijevych D, LeRoy A, Walker JR (2015) Probabilistic 0-1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J Appl Meteorol Climatol 54:1039–1059

    Google Scholar 

  22. Neto CP, Barbosa HA, Beneti CA (2016) A method for convective storm detection using satellite data. Atmósfera 29:343–358

    Google Scholar 

  23. Doswell CA III, (2001) Severe convective storms–an overview. Severe Convective Storms Meteor. Monogr., No. 50, American Meteorological Society, pp 1–26

  24. Maqsood I, Khan MR, Abraham A (2004) An ensemble of neural networks for weather forecasting. Neural Comput Appl 13(2):112–122

    Google Scholar 

  25. Sánchez-Monedero J, Salcedo-Sanz S, Gutiérrez P, Casanova-Mateo C, Hervás-Martínez C (2014) Simultaneous modelling of rainfall occurrence and amount using a hierarchical nominal-ordinal support vector classifier. Eng Appl Artif Intell 34:199–207

    Google Scholar 

  26. Ortiz-García EG, Salcedo-Sanz S, Casanova-Mateo C (2014) Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data. Atmos Res 139:128–136

    Google Scholar 

  27. Sachindra DA, Ahmed K, Rashid M, Shahid Perera S (2018) Statistical downscaling of precipitation using machine learning techniques. Atmos Res 212:240–258

    Google Scholar 

  28. Ghada W, Estrella N, Menzel A (2019) A machine learning approach to classify rain type based on Thies disdrometers and cloud observations. Atmosphere 10(5):251

    Google Scholar 

  29. Seo Y, Kim S, Singh VP (2018) Machine learning models coupled with variational mode decomposition: a new approach for modeling daily Rainfall–Runoff. Atmosphere 9(7):251

    Google Scholar 

  30. Cornejo-Bueno L, Casanova-Mateo C, Sanz-Justo J, Cerro-Prada E, Salcedo-Sanz S (2017) Efficient prediction of low-visibility events at airports using machine-learning regression. Bound Layer Meteorol 165:349–370

    Google Scholar 

  31. Guijo-Rubio D, Gutiérrez PA, Casanova-Mateo C, Sanz-Justo J, Salcedo-Sanz S, Hervás-Martínez C (2018) Prediction of low-visibility events due to fog using ordinal classification. Atmos Res 214:64–73

    Google Scholar 

  32. Durán-Rosal AM, Fernández JC, Casanova-Mateo C, Sanz-Justo J, Salcedo-Sanz S, Hervás-Martínez C (2018) Efficient fog prediction with multi-objective evolutionary neural networks. Appl Soft Comput 70:347–358

    Google Scholar 

  33. Salcedo-Sanz S, Casanova-Mateo C, Pastor-Sánchez A, Sánchez-Girón M (2014) Daily global solar radiation prediction based on a hybrid coral reefs optimization - extreme learning machine approach. Sol Energy 105:91–98

    Google Scholar 

  34. Aybar-Ruiz A, Jiménez-Fernández S, Cornejo-Bueno L, Casanova-Mateo C, Sanz-Justo J, Salvador-González P, Salcedo-Sanz S S (2016) A novel grouping genetic algorithm–extreme learning machine approach for global solar radiation prediction from numerical weather models inputs. Sol Energy 132:129–142

    Google Scholar 

  35. Cornejo-Bueno L, Casanova-Mateo C, Sanz-Justo J, Salcedo-Sanz S (2019) Machine learning regressors for solar radiation estimation from satellite data. Sol Energy 183:768–775

    Google Scholar 

  36. Bala K, Choubey DK, Paul S (2017) Soft computing and data mining techniques for thunderstorms and lightning prediction: a survey. In: International conference of electronics, communication and aerospace technology (ICECA 2017), RVS Technical Campus, Coimbatore, Tamilnadu, India, vol 1, pp 42–46

  37. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    MATH  Google Scholar 

  38. Fernández JC, Martínez-Estudillo FJ, Hervás-Martínez C, Gutiérrez PA (2010) Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans Neural Networks 21(5):750–770

    Google Scholar 

  39. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Google Scholar 

  40. Annex 3 to the convention on international civil aviation: meteorological service for international air navigation, 2016

  41. Prechelt L (1994) Proben1: a set of neural network benchmark problems and benchmarking rules

  42. Pérez-Ortiz M, Gutierrez PA, Hervás-Martínez C, Yao X (2014) Graph-based approaches for over-sampling in the context of ordinal regression. IEEE Trans Knowl Data Eng 27(5):1233–1245

    Google Scholar 

  43. Lippmann RP (1989) Pattern classification using neural networks. IEEE Commun Mag 27(11):47–50

    Google Scholar 

  44. Martínez-Estudillo FJ, Hervás-Martínez C, Gutiérrez PA, Martínez-Estudillo AC (2008) Evolutionary product-unit neural networks classifiers. Neurocomputing 72(1–3):548–561

    MATH  Google Scholar 

  45. Schmitt M (2002) On the complexity of computing and learning with multiplicative neural networks. Neural Comput 14(2):241–301

    MATH  Google Scholar 

  46. Billings SA, Zheng GL (1995) Radial basis function network configuration using genetic algorithms. Neural Netw 8(6):877–890

    Google Scholar 

  47. Donoho DL, Johnstone IM (1989) Projection-based approximation and a duality with kernel methods. Ann Stat 17:58–106

    MathSciNet  MATH  Google Scholar 

  48. Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D et al (2019) Bio-inspired computation: where we stand and what’s next. Swarm Evol Comput 48:220–250

    Google Scholar 

  49. Angeline PJ, Saunders GM, Pollack JB (1994) An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans Neural Netw 5(1):54–65

    Google Scholar 

  50. García-Pedrajas N, Hervás-Martínez C, Muñoz-Pérez J (2002) Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative networks). Neural Netw 15(10):1259–1278

    MATH  Google Scholar 

  51. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    MathSciNet  Google Scholar 

  52. Baldominos A, Saez Y, Isasi P (2019) On the automated, evolutionary design of neural networks: past, present, and future. Neural Comput Appl pp 1–27

  53. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: A tutorial. Reliab Eng Syst Saf 91(9):992–1007

    Google Scholar 

  54. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Google Scholar 

  55. Fernández JC, Cruz-Ramírez M, Hervás-Martínez C (2018) Sensitivity versus accuracy in ensemble models of artificial neural networks from multi-objective evolutionary algorithms. Neural Comput Appl 30(1):289–305

    Google Scholar 

  56. Martínez-Estudillo A, Martínez-Estudillo F, Hervás-Martínez C, García-Pedrajas N (2006) Evolutionary product unit based neural networks for regression. Neural Netw 19(4):477–486

    MATH  Google Scholar 

  57. Gutiérrez PA, Hervás C, Carbonero M, Fernández JC (2009) Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing 72(13–15):2731–2742

    Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Ministerio de Economía, Industria y Competitividad of Spain (Refs. TIN2017-85887-C2-1-P and TIN2017-85887-C2-2-P) and Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (Ref. UCO-1261651). D. Guijo-Rubio’s research has been supported by the FPU Predoctoral Program from Spanish Ministry of Education and Science (Grant Ref. FPU16/02128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Guijo-Rubio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guijo-Rubio, D., Gutiérrez, P.A., Casanova-Mateo, C. et al. Prediction of convective clouds formation using evolutionary neural computation techniques. Neural Comput & Applic 32, 13917–13929 (2020). https://doi.org/10.1007/s00521-020-04795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04795-w

Keywords

Navigation