Skip to main content
Log in

Robust control based on adaptive neural network for Rotary inverted pendulum with oscillation compensation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A new stable adaptive neural network (ANN) control scheme for the Furuta pendulum, as a two-degree-of-freedom underactuated nonlinear system, is proposed in this paper. This approach aims to address the control problem of the Furuta pendulum in the steady state and also in the presence of external disturbances. The adaptive classical control laws such as e-modification present some limitations in particular when oscillations are presented in the input. To avoid this problem, two ANNs are implemented using filtered tracking error in the control loop. The first one is a single hidden layer network, used to approximate the equivalent control online, and the second is the feed-forward network, used to minimize the oscillations. The goal of the control is to bring the pendulum close to the upright position in the presence of the various uncertainties and being able to compensate oscillations and external disturbances. The main purpose of the second ANN is to minimize the chattering phenomenon and response time by finding the optimal control input signal, which also leads to the reduction of energy consumption. The learning algorithms of the two ANNs are obtained using the direct Lyapunov stability method. The simulation results are given to highlight the performances of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kurode S, Asif C (2011) Swing-up and stabilization of rotary inverted pendulum. In: Preprints of the 18th IFAC world congress, Milano (Italy)

  2. Shubhobrata R, Ranjit kumar B (2013) Stabilization of furuta pendulum: a backstepping based hierarchical sliding mode approach with disturbance estimation. In: 7th International conference on intelligent systems and control (ISCO)

  3. Moreno-Valenzuela J (2016) Adaptive neural network control for the trajectory tracking of the furuta pendulum. IEEE Trans Cybern 46:3439–3452

    Article  Google Scholar 

  4. Furuta K, Yamakita M, Kobayashi S (1991) Swing-up control of inverted pendulum. In: International conference on industrial electronics, control and instrumentation

  5. Huang Y-F, Chen A-C (2013) Adaptive control of rotary inverted pendulum system with time-varying uncertainties. Springer, Berlin, pp 1112–1114

    Google Scholar 

  6. Acosta J (2010) Furuta’s pendulum: a conservative nonlinear model for theory and practice. Math Probl Eng 2010:742894. https://doi.org/10.1155/2010/742894

    Article  MATH  Google Scholar 

  7. Aguilar-Ibañez C, Suárez-Castañon M, Gutiérres- Frias O (2010) The direct Lyapunov method for the stabilization of the Furuta pendulum. Int J Control 83(11):2285–2293

    Article  MATH  Google Scholar 

  8. Turker T, Gorgun H, Cansever G (2012) Lyapunov’s direct method for stabilization of the Furuta pendulum. Turk J Electr Eng Comput Sci 120(1):99–110

    Google Scholar 

  9. de Jesús RJ (2018) Discrete time control based in neural networks for pendulums. Appl Soft Comput J 68:821–832

    Article  Google Scholar 

  10. Astrom K, Aracil J, Gordillo F (2008) A family of smooth controller for swinging up a pendulum. Automatica 36(2):1841–1848

    Article  MathSciNet  MATH  Google Scholar 

  11. Gordillo F, Acosta J, Aracil J (2003) A new swing-up law for the Furuta pendulum. Int J Control 76(8):836–844

    Article  MathSciNet  MATH  Google Scholar 

  12. Hera P, Freidovich L, Shiriaev A, Mettin U (2009) New approach for swing up the Furuta pendulum: theory and experiments. Mechatronics 19:1240–1250

    Article  Google Scholar 

  13. Hercus R, Wong K-Y (2013) Control of an inverted pendulum using the NeuraBase. In: International conference on neural information processing

  14. Aguilar L, Boiko I, Fridman L, Iriarte R (2009) Generating self-excited oscillations via two-relay controller. IEEE Trans Autom Control 54(2):416–420

    Article  MathSciNet  MATH  Google Scholar 

  15. Freidovich L, Shiriaev A, Gordillo F, Gomez-Estern F, Aracil J (2009) Partial-energy-shaping control for orbital stabilization of high-frequency oscillations of the Furuta pendulum. IEEE Trans Control Syst Technol 17(4):853–858

    Article  MATH  Google Scholar 

  16. Sicard P, Chaoui H (2011) Motion and balance neural control of inverted pendulums with nonlinear friction and disturbance. In: Proceedings of the 24th Canadian conference on electrical and computer engineering (CCECE), Niagara Falls, Canada

  17. Nelson J, Kraft LG (1994) Real-time control of an inverted pendulum system using complementary neural network and optimal techniques. In: American control conference, Baltimore

  18. Cong S, Liang Y (2009) PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems. IEEE Trans Ind Electron 56:3872–3879

    Article  Google Scholar 

  19. Hsu C-F (2014) Adaptive backstepping Elman-based neural control for unknown nonlinear systems. Neurocomputing 136:170–179

    Article  Google Scholar 

  20. Hsu C-F, Lin C-M, Yeh R-G (2013) Supervisory adaptive dynamic RBF-based neural-fuzzy control system design for unknown nonlinear systems. Appl Soft Comput 13:1620–1626

    Article  Google Scholar 

  21. Ping Z (2013) Tracking problems of a spherical inverted pendulum via neural network enhanced design. Neurocomputing 106:137–147

    Article  Google Scholar 

  22. Yu C, Wang F, Lu Y (2010) Robust control of a Furuta pendulum. In: SICE annual conference

  23. Khanesar M, Teshnehlab M, Shoorehdeli M (2007) Fuzzy sliding mode control of rotary inverted pendulum. In: IEEE international conference on computational cybernetics

  24. Van Cuong P, Nan WY (2016) Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Nat Comput Appl 27:525–536

    Google Scholar 

  25. Fantoni I (2002) Non-linear control for underactuated mechanical systems. Springer, London

    Book  Google Scholar 

  26. Olfati-Saber R (1999) Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum. In: Proceedings of the 38th IEEE conference on decision and control, vol 2, No. December, pp 1174–1181

  27. Boudjedir H, Yacef F, Bouhalim O, Rizoug A (2012) Dual neural network for adaptive sliding mode control of quadrotor helicopter stabilization. Int J Inf Sci Techn (IJIST) 2:1–14

    Google Scholar 

  28. Lewis FW, Jagannathan S, Yesildirak A (1998) Neural network control of robot manipulators and non-linear systems. Taylor & Francis, London

    Google Scholar 

  29. Shuzhi S, Ge S, Hang CC, Lee TH, Zhang T (2002) Stable adaptive neural network control. Springer, New York

    Google Scholar 

  30. Kim S, Jung SS (2008) Control experiment of a wheel-driven mobile inverted pendulum using neural network. IEEE Trans Control Syst Technol 16(2):297–303

    Article  Google Scholar 

  31. Zhang B-L, Han Q-L, Zhang X-M (2017) Recent advances in vibration control of offshore platforms. Nonlinear Dyn 89(2):755–771

    Article  Google Scholar 

  32. Zhang B-L, Han Q-L, Zhang X-M (2014) Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans Control Syst Technol 22:1769–1783

    Article  Google Scholar 

  33. George S, Feng L (2001) Adaptive neural network control by adaptive interaction. In: Proceedings of the American control conference

  34. Robert DB, Feng L (1999) Adaptive interaction and its application to neural networks. Inf Sci 121(3):201–215

    MathSciNet  Google Scholar 

  35. Kurode S, Asif C (2011) Swing-up and stabilization of rotary inverted pendulum using sliding modes. In: IFAC, Milano

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hassan Zabihifar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 10137 kb)

Supplementary material 2 (MP4 11420 kb)

Appendix

Appendix

1.1 Proof of the closed-loop system

Define the Lyapunov function candidate

$$\begin{aligned} L & = \frac{1}{2}\frac{{r^{2} }}{G} + \frac{1}{2}{\text{tr}} \left\{ {\tilde{W}^{\text{T}} F_{w}^{ - 1} \tilde{W}} \right\} + \frac{1}{2}{\text{tr}}\left\{ {\tilde{V}^{\text{T}} F_{v}^{ - 1} \tilde{V}} \right\} + \frac{1}{2}{\text{tr}}\left\{ {\tilde{B}^{\text{T}} F_{B}^{ - 1} \tilde{B}} \right\} \\ & \quad + \frac{1}{2}{\text{tr}}\left\{ {\tilde{ \propto }^{\text{T}} F_{ \propto }^{ - 1} \tilde{ \propto }} \right\} \\ \end{aligned}$$
(49)

where L is the proposed Lyapunov function. Differentiating yields

$$\begin{aligned} \dot{L} & = r\frac{{\dot{r}}}{G} - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} + {\text{tr}} \left\{ {\tilde{W}^{\text{T}} F_{w}^{ - 1} \dot{\tilde{W}}} \right\} + tr\left\{ {\tilde{V}^{\text{T}} F_{v}^{ - 1} \dot{\tilde{V}}} \right\} + tr\left\{ {\tilde{B}^{\text{T}} F_{B}^{ - 1} \dot{\tilde{B}}} \right\} \\ & \quad + {\text{tr}}\left\{ {\tilde{ \propto }^{\text{T}} F_{ \propto }^{ - 1} \dot{\tilde{ \propto }}} \right\} \\ \end{aligned}$$
(50)

Whence substitution from (38) (with \(w_{1} = 0)\) yields

$$\begin{aligned} \dot{L} & = - K_{v} r^{2} - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} + {\text{tr}}\left\{ {\tilde{W}^{\text{T}} \left( {F_{w}^{ - 1} \dot{\tilde{W}} + \hat{\sigma }r^{\text{T}} } \right)} \right\} + {\text{tr}} \left\{ {\tilde{V}^{\text{T}} \left( {F_{v}^{ - 1} \dot{\tilde{V}} + xr^{\text{T}} \hat{W}^{T} \hat{\sigma }^{'} } \right)} \right\} \\ & \quad + {\text{tr}} \left\{ {\tilde{B}^{\text{T}} \left( {F_{B}^{ - 1} \dot{\tilde{B}} - r^{\text{T}} \hat{Z}} \right)} \right\} + tr \left\{ {\tilde{ \propto }^{\text{T}} \left( {F_{ \propto }^{ - 1} \dot{\tilde{ \propto }} + x^{e} r^{\text{T}} \hat{B}\hat{Z}^{'} } \right)} \right\} \\ \end{aligned}$$
(51)

Since \(\hat{W} = W - \hat{W}\), the W is constant, so \({\text{d}}\frac{{\hat{W}}}{{{\text{d}}t}} = - {\text{d}}\hat{W}/{\text{d}}t\), as for V, B and ∝, the tuning rules from (32) and (25) yield.

$$\begin{aligned} \dot{L} & = - K_{v} r^{2} - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} + {\text{tr}}\left\{ {\tilde{W}^{\text{T}} \left( {{\text{kr}}\tilde{W}} \right)} \right\} + {\text{tr}} \left\{ {\tilde{V}^{\text{T}} \left( {{\text{kr}}\hat{V}} \right)} \right\} \\ & \quad + {\text{tr}} \left\{ {\tilde{B}^{\text{T}} \hat{Z} \left( {r - r_{e} } \right)} \right\} + {\text{tr}} \left\{ {\tilde{ \propto }^{\text{T}} \left( {x^{e} \hat{B}\hat{Z}^{'} \left( {r - r_{e} } \right) - k_{\alpha } \left| {r_{e} } \right|\left( {\bar{\alpha } - \hat{\alpha }} \right)} \right)} \right\} \\ \end{aligned}$$
(52)
$$\begin{aligned} \dot{L} & = - K_{v} r^{2} - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} + {\text{krtr}}\left\{ {\tilde{W}^{\text{T}} \left( {W - \tilde{W}} \right)} \right\} + {\text{krtr}} \left\{ {\tilde{V}^{\text{T}} \left( {V - \tilde{V}} \right)} \right\} \\ & \quad + {\text{tr}} \left\{ {\tilde{B}^{\text{T}} \hat{Z} \left( {r - r_{e} } \right)} \right\} + {\text{tr}} \left\{ {\tilde{ \propto }^{\text{T}} \left( {x^{e} \hat{B}\hat{Z}^{'} \left( {r - r_{e} } \right) - k_{\alpha } \left| {r_{e} } \right|\left( {\bar{\alpha } - \hat{\alpha }} \right)} \right)} \right\} \\ \end{aligned}$$
(53)

Define the matrix of all the NN weights as

$$T \equiv \left[ {\begin{array}{*{20}c} W & 0 \\ 0 & V \\ \end{array} } \right]$$
(54)

Assumption: On any compact subset of \(\Re^{n}\), the ideal NN weights are bounded so that

$$\left\| T \right\|_{F} \le T_{B}$$

with \(T_{B}\) known, and \(\left\| \cdot \right\|_{\text{F}}\) is the Frobenius norm. Then

$$\begin{aligned} \dot{L} & = - K_{v} r^{2} - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} + {\text{krtr}}\left\{ {\tilde{T}^{\text{T}} \left( {T - \tilde{T}} \right)} \right\} \\ & \quad + \left( {r - r_{e} } \right){\text{tr}} \left\{ {\tilde{B}^{\text{T}} \hat{Z} + \tilde{ \propto }^{\text{T}} x^{e} \hat{B}\hat{Z}^{'} } \right\} - k_{\alpha } \left| {r_{e} } \right|{\text{tr}} \left\{ {\left( {\bar{\alpha } - \hat{\alpha }} \right)} \right\} \\ \end{aligned}$$
(55)

Since \({\text{tr}}\left\{ {\tilde{T}^{\text{T}} (T - \,\tilde{T})} \right\} \le \left\| {\tilde{T}} \right\|_{F} \left\| T \right\|_{F} - \left\| {\tilde{T}} \right\|_{F}^{2}\), the results are as follows[28]:

$$\begin{aligned} \dot{L} & \le - rK_{v} r - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} + {\text{kr}} \cdot \tilde{T}_{F} \left( {T_{B} - \tilde{T}_{F} } \right) \\ & \quad + \left( {r - r_{e} } \right){\text{tr}} \left\{ {\tilde{B}^{\text{T}} \hat{Z} + \tilde{ \propto }^{\text{T}} x^{e} \hat{B}\hat{Z}^{'} } \right\} - k_{\alpha } \left| {r_{e} } \right|{\text{tr}} \left\{ {\left( {\bar{\alpha } - \hat{\alpha }} \right)} \right\} \\ \dot{L} & \le - rK_{v} r - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} - {\text{kr}} \cdot \left( {\tilde{T}_{F} - D} \right)^{2} + {\text{kr}}D^{2} \\ & \quad + \left( {r - r_{e} } \right)tr \left\{ {\tilde{B}^{\text{T}} \hat{Z} + \tilde{ \propto }^{\text{T}} x^{e} \hat{B}\hat{Z}^{'} } \right\} - k_{\alpha } \left| {r_{e} } \right|{\text{tr}} \left\{ {\left( {\bar{\alpha } - \hat{\alpha }} \right)} \right\} \\ \dot{L} & \le - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} - {\text{kr}} \cdot \left( {\tilde{Z}_{F} - D} \right)^{2} - r(K_{v} r - kD^{2} ) \\ & \quad - \left( {\bar{w}_{g} + k_{ \propto } \frac{{ \propto_{m}^{2} }}{4} + k_{ \propto } \tilde{ \propto }\bar{ \propto }} \right)\left| {r_{e} } \right| \\ \dot{L} & \le - \frac{1}{2}\frac{{\dot{G}}}{{G^{2} }}r^{2} - {\text{kr}} \cdot \left( {\tilde{Z}_{F} - D} \right)^{2} - r(K_{v} r - kD^{2} ) \\ & \quad - \left( {\bar{w}_{g} + k_{ \propto } \frac{{ \propto_{m}^{2} }}{4}} \right)\left| {r_{e} } \right| - k_{ \propto } \left| {r_{e} } \right| \propto_{n}^{2} \\ \end{aligned}$$
(56)

where \(D = \frac{{T_{B} }}{2}\). Suppose that k > 0, using the inequality in (15), the first term is negative; then, we prove that the Lyapunov first-time derivative becomes negative if:

$$r > \frac{{kD^{2} }}{{K_{v} }}$$

Then, we prove that the Lyapunov first-time derivative will be:

$$\dot{L} \le 0$$

which guarantees the stability of closed-loop system [3, 27, 28].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabihifar, S.H., Yushchenko, A.S. & Navvabi, H. Robust control based on adaptive neural network for Rotary inverted pendulum with oscillation compensation. Neural Comput & Applic 32, 14667–14679 (2020). https://doi.org/10.1007/s00521-020-04821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04821-x

Keywords

Navigation