Skip to main content

Advertisement

Log in

Synergetic fusion of energy optimization and waste heat reutilization using nature-inspired algorithms: a case study of Kraft recovery process

  • S. I : Hybridization of Neural Computing with Nature Inspired Algorithms
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This article presents a novel energy management strategy of multiple-stage evaporator (MSE). The maximum efficiency of MSE is achieved by optimum selection of unknown steady-state process parameters such as vapor temperatures and liquor flow rates. Various energy reduction schemes (ERSs) have been integrated to achieve a substantial enhancement in energy efficiency. For energy optimization, a set of nonlinear mathematical models for various ERSs are formulated and transformed to optimization problems. Three nature-inspired algorithms, namely GA, DE and PSO, are employed to compute these optimal process parameters and hence evaluate the energy efficiency. The simulated results accentuate that these algorithms efficiently converge approximately at the same values. The results reveal that the hybrid model with maximum efficiency of 8.24 is characterized as the most energy-efficient operating strategy. The amalgamation of flash tanks with the intention of reutilizing the waste steam further enhances the energy efficiency by 4.97%, thereby proving to be the most prominent operating strategy with the highest efficiency of 8.65.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

λ :

Latent heat of vaporization (kJ/kg)

A :

Heat transfer area (m2)

Cp :

Specific heat

f :

Feed

h :

Enthalpy (kJ/h)

h c :

Enthalpy of condensate (kJ/h)

h LP :

Liquor enthalpy for product flash tank

H :

Enthalpy of vapor (kJ/h)

H vp :

Enthalpy of vapor out from product flash tank (kJ/h)

i :

Stage number

J :

Objective function

k :

Feed split fraction

L :

Liquor flow rate (kg/s)

L f :

Weak liquor feed flow rate

L p :

Concentrated product liquor flow rate

m :

Vapor fraction of preheater send to the seventh stage

U :

Overall heat transfer coefficient (kW/m2°C)

V :

Vapor flow (kg/s)

V p :

Vapor out from product flash tank

X :

Concentration of liquor

y :

Steam split fraction

z :

Decision variables

CFV:

Condensate flash vessel

CO:

Condensate out

DE:

Differential evolution

ERS:

Energy reduction scheme

FFT:

Feed flash tank

GA:

Genetic algorithm

NIA:

Nature-inspired algorithm

PFT:

Product flash tank

PH:

Preheater

PSO:

Particle swarm optimization

SNLAE:

Set of nonlinear algebraic equations

References

  1. Golley J, Tyers R (2013) Contrasting giants: demographic change and economic performance in China and India. Procedia Soc Behav Sci 77:353–383. https://doi.org/10.1016/j.sbspro.2013.03.093

    Article  Google Scholar 

  2. Wei Y, Wang Z, Wang H et al (2019) Predicting population age structures of China, India, and Vietnam by 2030 based on compositional data. PLoS ONE. https://doi.org/10.1371/journal.pone.0212772

    Article  Google Scholar 

  3. Froese FJ, Sutherland D, Lee JY et al (2019) Challenges for foreign companies in China: implications for research and practice. Asian Bus Manag 18:249–262. https://doi.org/10.1057/s41291-019-00084-0

    Article  Google Scholar 

  4. Chen X, Kuhn E, Nagle N et al (2018) Recycling of dilute deacetylation black liquor to enable efficient recovery and reuse of spent chemicals and biomass pretreatment waste. Front Energy Res. https://doi.org/10.3389/fenrg.2018.00051

    Article  Google Scholar 

  5. AL-Kaabi Z, Pradhan R, Thevathasan N et al (2018) Beneficiation of renewable industrial wastes from paper and pulp processing. AIMS Energy 6:880–907

    Article  Google Scholar 

  6. Naqvi M, Yan J, Dahlquist E (2010) Black liquor gasification integrated in pulp and paper mills: a critical review. Bioresour Technol 101:8001–8015. https://doi.org/10.1016/j.biortech.2010.05.013

    Article  Google Scholar 

  7. Naqvi M, Yan J, Dahlquist E (2012) Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO2 capture. Bioresour Technol 110:637–644. https://doi.org/10.1016/j.biortech.2012.01.070

    Article  Google Scholar 

  8. Gupta GK, Shukla P (2019) Insights into the resources generation from pulp and paper industry wastes: challenges, perspectives and innovations. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122496

    Article  Google Scholar 

  9. Khanam S, Mohanty B (2010) Energy reduction schemes for multiple effect evaporator systems. Appl Energy 87:1102–1111. https://doi.org/10.1016/j.apenergy.2009.05.003

    Article  Google Scholar 

  10. Verma OP, Manik G, Sethi SK (2019) A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control. Renew Sustain Energy Rev 100:90–109. https://doi.org/10.1016/j.rser.2018.10.002

    Article  Google Scholar 

  11. Kaya D, Ibrahim Sarac H (2007) Mathematical modeling of multiple-effect evaporators and energy economy. Energy 32:1536–1542. https://doi.org/10.1016/j.energy.2006.09.002

    Article  Google Scholar 

  12. Sharan P, Bandyopadhyay S (2016) Integration of thermo-vapor compressor with multiple-effect evaporator. Appl Energy 184:560–573. https://doi.org/10.1016/j.apenergy.2016.10.037

    Article  Google Scholar 

  13. Sharan P, Neises T, Turchi C (2018) Optimal feed flow sequence for multi-effect distillation system integrated with supercritical carbon dioxide Brayton cycle for seawater desalination. J Clean Prod 196:889–901. https://doi.org/10.1016/J.JCLEPRO.2018.06.009

    Article  Google Scholar 

  14. Bhargava R, Khanam S, Mohanty B, Ray AK (2008) Selection of optimal feed flow sequence for a multiple effect evaporator system. Comput Chem Eng 32:2203–2216. https://doi.org/10.1016/j.compchemeng.2007.10.012

    Article  Google Scholar 

  15. Hillenbrand JB, Westerberg AW (1988) The synthesis of multiple-effect evaporator systems using minimum utility insights-I. A cascaded heat representation. Comput Chem Eng 12:611–624. https://doi.org/10.1016/0098-1354(88)80003-6

    Article  Google Scholar 

  16. Verma OP, Manik G, Mohammed TH (2017) Energy management in multi stage evaporator through a steady and dynamic state analysis. Korean J Chem Eng 34:2570–2583. https://doi.org/10.1007/s11814-017-0180-4

    Article  Google Scholar 

  17. Karlsson M (2011) The MIND method: a decision support for optimization of industrial energy systems—principles and case studies. Appl Energy 88:577–589. https://doi.org/10.1016/j.apenergy.2010.08.021

    Article  Google Scholar 

  18. Verma OP, Mohammed TH, Mangal S, Manik G (2016) Mathematical modeling of multistage evaporator system in Kraft recovery process. In: Pant M, Deep K, Bansal JC et al (eds) Proceedings of fifth international conference on soft computing for problem solving: SocProS 2015, vol 2. Springer Singapore, Singapore, pp 1011–1042

  19. Verma OP, Mohammed TH, Mangal S, Manik G (2017) Minimization of energy consumption in multi-stage evaporator system of Kraft recovery process using interior-point method. Energy 129:148–157. https://doi.org/10.1016/j.energy.2017.04.093

    Article  Google Scholar 

  20. Lambert RN, Joye DD, Koko FW (1987) Design calculations for multiple-effect evaporators. 1. Linear method. Ind Eng Chem Res 26:100–104. https://doi.org/10.1021/ie00061a019

    Article  Google Scholar 

  21. Danish M, Singh SP (2014) A short note on the solution of a multi-effect evaporator system employed in pulp and paper industry. Appl Math Model 38:4157–4160. https://doi.org/10.1016/j.apm.2014.01.003

    Article  Google Scholar 

  22. Kumar D, Kumar V, Singh VP (2010) To study the parametric effects on optimality of various feeding sequences of a multi- effect evaporators in paper industry using mathematical modeling and simulation with MATLAB. Engineering 4:129–136

    Article  MathSciNet  Google Scholar 

  23. Zain OS, Kumar S (1996) Simulation of a multiple effect evaporator for concentrating caustic soda solution-computational aspects. J Chem Eng Japan 29:889–893

    Article  Google Scholar 

  24. Ribeiro CP, Caño Andrade MH (2002) A heat transfer model for the steady-state simulation of climbing-falling-film plate evaporators. J Food Eng 54:309–320. https://doi.org/10.1016/S0260-8774(01)00217-5

    Article  Google Scholar 

  25. Sagharichiha M, Jafarian A, Asgari M, Kouhikamali R (2014) Simulation of a forward feed multiple effect desalination plant with vertical tube evaporators. Chem Eng Process Process Intensif 75:110–118. https://doi.org/10.1016/j.cep.2013.11.008

    Article  Google Scholar 

  26. Diel CL, Canevesi RLS, Zempulski DA et al (2016) Optimization of multiple-effect evaporation in the pulp and paper industry using response surface methodology. Appl Therm Eng 95:18–23. https://doi.org/10.1016/j.applthermaleng.2015.10.136

    Article  Google Scholar 

  27. Tijskens E, Roose D, Ramon H, De Baerdemaeker J (2002) Automatic differentiation for solving nonlinear partial differential equations: an efficient operator overloading approach. Numer Algorithms 30:259–301. https://doi.org/10.1023/A:1020103610525

    Article  MathSciNet  MATH  Google Scholar 

  28. Jameel AF, Saaban A, Zureigat HH (2018) Numerical solution of second-order fuzzy nonlinear two-point boundary value problems using combination of finite difference and Newton’s methods. Neural Comput Appl 30:3167–3175. https://doi.org/10.1007/s00521-017-2893-z

    Article  Google Scholar 

  29. Venkateshan SP, Swaminathan P (2014) Solution of algebraic equations. In: Computational methods in engineering. Elsevier, pp 155–201

  30. Verma OP, Suryakant Manik G (2017) Solution of SNLAE model of backward feed multiple effect evaporator system using genetic algorithm approach. Int J Syst Assur Eng Manag 8:63–78. https://doi.org/10.1007/s13198-016-0533-0

    Article  Google Scholar 

  31. Morandin M, Toffolo A, Lazzaretto A et al (2011) Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system. Energy 36:3675–3690. https://doi.org/10.1016/j.energy.2010.10.063

    Article  Google Scholar 

  32. Sharan P, Bandyopadhyay S (2016) Energy integration of multiple effect evaporators with background process and appropriate temperature selection. Ind Eng Chem Res 55:1630–1641. https://doi.org/10.1021/acs.iecr.5b03516

    Article  Google Scholar 

  33. Cortés MG, Verelst H, Suárez EG (2010) Energy integration of multiple effect evaporators in sugar process production. Chem Eng Trans 21:277–282. https://doi.org/10.3303/CET1021047

    Article  Google Scholar 

  34. Pourrajabian A, Ebrahimi R, Mirzaei M, Shams M (2013) Applying genetic algorithms for solving nonlinear algebraic equations. Appl Math Comput 219:11483–11494. https://doi.org/10.1016/j.amc.2013.05.057

    Article  MathSciNet  MATH  Google Scholar 

  35. Jaberipour M, Khorram E, Karimi B (2011) Particle swarm algorithm for solving systems of nonlinear equations. Comput Math Appl 62:566–576. https://doi.org/10.1016/j.camwa.2011.05.031

    Article  MathSciNet  MATH  Google Scholar 

  36. Chi R, Su YX, Zhang DH et al (2019) A hybridization of cuckoo search and particle swarm optimization for solving optimization problems. Neural Comput Appl 31:653–670. https://doi.org/10.1007/s00521-017-3012-x

    Article  Google Scholar 

  37. Qiao JF, Hou Y, Han HG (2019) Optimal control for wastewater treatment process based on an adaptive multi-objective differential evolution algorithm. Neural Comput Appl 31:2537–2550. https://doi.org/10.1007/s00521-017-3212-4

    Article  Google Scholar 

  38. Pandey HM (2017) performance review of harmony search, differential evolution and particle swarm optimization. In: IOP conference series: materials science and engineering. Institute of Physics Publishing

  39. Pandey HM, Shukla A, Chaudhary A, Mehrotra D (2016) Evaluation of genetic algorithm’s selection methods. In: Advances in intelligent systems and computing. Springer Verlag, pp 731–738

  40. Agrawal AP, Choudhary A, Kaur A, Pandey HM (2019) Fault coverage-based test suite optimization method for regression testing: learning from mistakes-based approach. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04098-9

    Article  Google Scholar 

  41. Loghmanian SMR, Jamaluddin H, Ahmad R et al (2012) Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm. Neural Comput Appl 21:1281–1295. https://doi.org/10.1007/s00521-011-0560-3

    Article  Google Scholar 

  42. Sacco WF, Henderson N (2011) Finding all solutions of nonlinear systems using a hybrid metaheuristic with fuzzy clustering means. Appl Soft Comput J 11:5424–5432. https://doi.org/10.1016/j.asoc.2011.05.016

    Article  Google Scholar 

  43. Waseem M, Noor MA, Noor KI (2016) Efficient method for solving a system of nonlinear equations. Appl Math Comput 275:134–146. https://doi.org/10.1016/j.amc.2015.11.061

    Article  MathSciNet  MATH  Google Scholar 

  44. Koupaei JA, Hosseini SMM (2015) A new hybrid algorithm based on chaotic maps for solving systems of nonlinear equations. Chaos Solitons Fractals 81:233–245. https://doi.org/10.1016/j.chaos.2015.09.027

    Article  MathSciNet  MATH  Google Scholar 

  45. Pandey HM (2016) performance evaluation of selection methods of genetic algorithm and network security concerns. In: Physics procedia. Elsevier B.V., pp 13–18

  46. Mateos-Espejel E, Savulescu L, Paris J (2011) Base case process development for energy efficiency improvement, application to a Kraft pulping mill. Part I: definition and characterization. Chem Eng Res Des 89:742–752. https://doi.org/10.1016/j.cherd.2010.09.012

    Article  Google Scholar 

  47. Verma OP, Mohammed TH, Mangal S, Manik G (2018) Optimization of steam economy and consumption of heptad’s effect evaporator system in Kraft recovery process. Int J Syst Assur Eng Manag 9:111–130. https://doi.org/10.1007/s13198-016-0488-1

    Article  Google Scholar 

  48. Pandey HM, Chaudhary A, Mehrotra D (2014) A comparative review of approaches to prevent premature convergence in GA. Appl Soft Comput J 24:1047–1077

    Article  Google Scholar 

  49. Shukla A, Pandey HM, Mehrotra D (2015) Comparative review of selection techniques in genetic algorithm. In: 2015 1st international conference on futuristic trends in computational analysis and knowledge management, ABLAZE 2015. Institute of Electrical and Electronics Engineers Inc., pp 515–519

  50. Pandey HM, Chaudhary A, Mehrotra D (2016) Grammar induction using bit masking oriented genetic algorithm and comparative analysis. Appl Soft Comput J 38:453–468. https://doi.org/10.1016/j.asoc.2015.09.044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash Verma.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, S., Yadav, D. & Verma, O.P. Synergetic fusion of energy optimization and waste heat reutilization using nature-inspired algorithms: a case study of Kraft recovery process. Neural Comput & Applic 33, 10751–10770 (2021). https://doi.org/10.1007/s00521-020-04828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04828-4

Keywords