Skip to main content
Log in

Fault classification in three-phase motors based on vibration signal analysis and artificial neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Competition in the industrial environment is increasingly intense, so it is of utmost importance that organizations keep their assets in operation as much as possible (in order to produce more). In this context, there is a need for predictive maintenance, a technique that detects the health of assets in real time, allowing failures to be diagnosed before they can interrupt the operation of the assets, avoiding high financial losses. This study uses a sixteen-motor experimental setup with four different known operating conditions. The vibration signal of these motors, through signal analysis, both in time and frequency domains, is performed to evaluate the types and severities of the defects. An artificial neural network (ANN) is used to classify these defects. Considering the vibration analysis, mechanical faults can be identified quickly and conveniently. For the development of the ANN, it was necessary to perform a preprocessing of the vibration signal (response in time) due to the data size, which overwhelms the network. Thus, statistical data were used to extract key information from the vibration signal. Finally, the neural network created based on this study’s methodology presents extremely reliable results, allowing a quick and robust diagnosis of the motor operating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [2]

Fig. 2

Adapted from [26]

Fig. 3

Adapted from [24]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abelém AJG, Pacheco MAC, Vellasco MMBR (1995) Modelagem de redes neurais artificiais para previsão de séries temporais. In: Simpósio brasileiro de redes neurais, 2., 1995. Universidade Federal de São Carlos

  2. Abraman A (2017) situação da Manutenção no Brasil. Associação Brasileira de Manutenção e Gestão de Ativos, Documento Nacional, Rio de Janeiro: ABRAMAN

  3. Almeida FA, De Paula TI, Leite RR, Gomes GF, Gomes JHF, Paiva AP, Balestrassi PP (2018) A multivariate GR&R approach to variability evaluation of measuring instruments in resistance spot welding process. J Manuf Process 36:465–479. https://doi.org/10.1016/j.jmapro.2018.10.030

    Article  Google Scholar 

  4. Almeida FA, Leite RR, Gomes GF, de Freitas Gomes JH, de Paiva AP (2020) Multivariate data quality assessment based on rotated factor scores and confidence ellipsoids. Decis Support Syst. https://doi.org/10.1016/J.DSS.2019.113173

    Article  Google Scholar 

  5. Barbosa LCM, Gomes G, Junior ACA (2019) Prediction of temperature-frequency-dependent mechanical properties of composites based on thermoplastic liquid resin reinforced with carbon fibers using artificial neural networks. Int J Adv Manuf Technol 105(5–6):2543–2556

    Article  Google Scholar 

  6. Beale MH, Hagan MT, Demuth HB (2010) Neural network toolbox™ user’s guide. The MathWorks, Natick

    Google Scholar 

  7. Bomfin Júnior A (2004) Implementação de uma rede neural artificial na associação de imagens do radar meteorológico e dados de descargas elétricas. INPE, São José dos Campos

  8. Eswari JS, Majdoubi J, Naik S, Gupta S, Bit A, Rahimi-Gorji M, Saleem A (2020) Prediction of stenosis behaviour in artery by neural network and multiple linear regressions. Biomech Model Mechanobiol 12:1–15

    Google Scholar 

  9. Ferneda E (2006) Redes neurais e sua aplicação em sistemas de recuperação de informação. Ciência da Informação 35(1):25

    Article  Google Scholar 

  10. Fogliatto FS, Ribeiro JLD (2009) Confiabilidade e Manutenção Industrial. Elsevier, Rio de Janeiro

    Google Scholar 

  11. Gaud DK, Agrawal P, Jayaswal P (2016) Fault diagnosis of rolling element bearing based on vibration & current signatures: an optimal network parameter selection. In: 2016 International conference on electrical, electronics, and optimization techniques (ICEEOT). IEEE

  12. Gomes GF, de Almeida FA, Junqueira DM, da Cunha Jr SS, Ancelotti AC Jr (2019) Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods. Eng Struct 181:111–123

    Article  Google Scholar 

  13. Gomes GF, Mendéz YAD, Alexandrino PDSL, da Cunha Jr SS, Ancelotti AC Jr (2018) The use of intelligent computational tools for damage detection and identification with an emphasis on composites–a review. Compos Struct 196:44–54

    Article  Google Scholar 

  14. Hameed SS, Vaithiyanathan M, Kesavan M (2019) fault detection in single stage helical planetary gearbox using artificial neural networks (ANN) and decision tree with histogram features (No. 2019-28-0151). SAE technical paper

  15. Haykin S (1994) Neural networks. A comprehensive Foundation. Prentice Hall, New Jersey

    MATH  Google Scholar 

  16. Lewis HG, Brown M (2001) A generalized confusion matrix for assessing area estimates from remotely sensed data. Int J Remote Sens 22(16):3223–3235

    Article  Google Scholar 

  17. Lima WC, Arantes JAS (2008) Manutenção Preditiva: Caminho para a Excelência e Vantagem Competitiva. XIII, SIMPEP, Bauru, SP, Brasil

  18. Marçal RA, Santos RL (2013) Medição, análise e controle de vibração em máquinas industriais: estudo de caso em uma empresa de grande porte do setor madeireiro. Universidade Tecnológica Federal do Paraná, Trabalho de Conclusão de Curso

    Google Scholar 

  19. Martineli E (1999) Extração de conhecimento de redes neurais artificiais. Tese de Doutorado. Universidade de São Paulo

  20. Montgomery DC (2017) Design and analysis of experiments, 9th edn. Wiley, New York

    Google Scholar 

  21. Moubray J (2000) Manutenção Centrada em Confiabilidade (Reliability-centred Maintenance)–Edição Brasileira. SPES, Aladon Ltda, São Paulo

    Google Scholar 

  22. Patel JP, Upadhyay SH (2016) Comparison between artificial neural network and support vector method for a fault diagnostic in rolling element bearings. Procedia Eng 144:390

    Article  Google Scholar 

  23. Sampaio GS, de Aguiar Vallim Filho AR, da Silva LS, da Silva LA (2019) Prediction of motor failure time using an artificial neural network. Sensors (Basel, Switzerland) 19(19):10

    Google Scholar 

  24. Silva JGB (2018) Aplicação da Análise de componentes Principais (PCA) no diagnóstico de defeitos de rolamentos através da assinatura elétrica de motores de indução. Dissertação de Mestrado em Engenharia Elétrica. Itajubá: Universidade Federal de Itajubá

  25. Yetis H, Karakose M, Aydin I, Akin E (2019) Bearing fault diagnosis in traction motor using the features extracted from filtered signals. In: 2019 International artificial intelligence and data processing symposium (IDAP), September. IEEE, pp 1–4

  26. Zarei J, Tajeddini MA, Karimi HR (2014) Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics 24(2):151

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Brazilian agency CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais - APQ-00385-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Ferreira Gomes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Analysis of variance of the main effects

Appendix: Analysis of variance of the main effects

See Table 7.

Table 7 Analysis of variance of the motor response

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro Junior, R.F., de Almeida, F.A. & Gomes, G.F. Fault classification in three-phase motors based on vibration signal analysis and artificial neural networks. Neural Comput & Applic 32, 15171–15189 (2020). https://doi.org/10.1007/s00521-020-04868-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04868-w

Keywords

Navigation