Abstract
Most existing regression-based classification methods cope with pixelwise noise via \(\ell _1\)-norm or \(\ell _2\)-norm, but neglect the structural information between pixels. To the best of our knowledge, nuclear norm-based matrix regression approaches have achieved great success for addressing imagewise noise, but may result in unreasonable regression and incorrect classification, especially when test images are extremely corrupted by larger occlusions and severe illumination variations, since they apply the corrupted test images to reconstruction process directly, and the influence of noise will be unavoidable. To overcome this limitation, this paper presents a robust mixed-norm constrained regression model to deal with the structural noise corruption. To be more specific, nuclear norm of the error between corrupted test image and its corresponding recovered image is exploited as a regular term for characterizing the low rank noise structure, and Frobenius norm is utilized to depict the difference between the recovered image and restructured image on account of the less noise of recovered image. Then, we adopt the alternating direction method of multipliers to settle our proposed approaches efficiently. Furthermore, the theoretical convergence proof and detailed analysis of computational complexity are provided to assess our algorithms. Eventually, extensive experiments on five well-known face databases have manifested that the proposed methods outperform some state-of-the-art regression-based approaches for primarily addressing noise caused by occlusion and illumination changes.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chen S, Gong C, Yang J, Li X, Wei Y, Li J (2018) Adversarial metric learning. Preprint arXiv:180203170
Tang J, Lin J, Li Z, Yang J (2018) Discriminative deep quantization hashing for face image retrieval. IEEE Trans Neural Netw Learn Syst 29(12):6154–6162
Yang J, Luo L, Qian J, Tai Y, Zhang F, Xu Y (2017) Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans Pattern Anal Mach Intell 39(1):156–171
Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112
Naseem I, Togneri R, Bennamoun M (2012) Robust regression for face recognition. Pattern Recognit 45(1):104–118
Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227
Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: IEEE International conference on computer vision. IEEE, Barcelona, Spain, pp 471–478
Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat-theor M 6(9):813–827
Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: IEEE computer society conference on computer vision and pattern recognition, IEEE, pp 625–632
He R, Zheng WS, Hu BG (2011) Maximum correntropy criterion for robust face recognition. IEEE Trans Pattern Anal Mach Intell 33(8):1561–1576
He R, Zheng WS, Tan T, Sun Z (2014) Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans Pattern Anal Mach Intell 36(2):261–275
Jia K, Chan TH, Ma Y (2012) Robust and practical face recognition via structured sparsity. In: European conference on computer vision, Springer, pp 331–344
Luo L, Yang J, Qian J, Tai Y (2015) Nuclear-\(\ell _1\) norm joint regression for face reconstruction and recognition with mixed noise. Pattern Recognit 48(12):3811–3824
Xu Y, Fang X, Wu J, Li X, Zhang D (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863
Qian J, Luo L, Yang J, Zhang F, Lin Z (2015) Robust nuclear norm regularized regression for face recognition with occlusion. Pattern Recognit 48(10):3145–3159
Deng YJ, Li HC, Wang Q, Du Q (2018) Nuclear norm-based matrix regression preserving embedding for face recognition. Neurocomputing 311:279–290
Luo L, Tu Q, Yang J, Yang J (2018) An adaptive line search scheme for approximated nuclear norm based matrix regression. Neurocomputing 289:23–31
Zhang H, Wu QJ, Chow TW, Zhao M (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recognit 45(5):1866–1876
Wright J, Ganesh A, Rao S, Peng Y, Ma Y (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in neural information processing systems, pp 2080–2088
Favaro P, Vidal R, Ravichandran A (2011) A closed form solution to robust subspace estimation and clustering. In: IEEE computer society conference on computer vision and pattern recognition, IEEE, pp 1801–1807
Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781
Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184
Candes EJ, Tao T (2010) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080
Nie FP, Huang H, Ding C, Luo DJ, Wang H (2011) Robust principal component analysis with non-greedy \(\ell _1\)-norm maximization. In: Proceedings of the 2011 international joint conference on artificial intelligence, vol 22, pp 1433–1438
Vidal R, Favaro P (2014) Low rank subspace clustering (lrsc). Pattern Recognit Lett 43:47–61
Chen J, Yang J, Luo L, Qian J, Xu W (2015) Matrix variate distribution-induced sparse representation for robust image classification. IEEE Trans Neural Netw Learn Syst 26(10):2291–2300
Zheng J, Lou K, Yang X, Bai C, Tang J (2019) Weighted mixed-norm regularized regression for robust face identification. IEEE Trans Neural Netw Learn Syst
Chen S, Yang J, Wei Y, Luo L, Lu GF, Gong C (2019) \(\delta\)-norm-based robust regression with applications to image analysis. IEEE Trans Cybern
Zhang H, Jian Y, Xie J, Qian J, Zhang B (2017) Weighted sparse coding regularized nonconvex matrix regression for robust face recognition. Inf Sci 394:1–17
Chen S, Yang J, Luo L, Wei Y, Zhang K, Tai Y (2017) Low-rank latent pattern approximation with applications to robust image classification. IEEE Trans Image Process 26(11):5519–5530
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York
Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Preprint arXiv:10095055
Luo L, Yang J, Qian J, Tai Y, Lu GF (2017) Robust image regression based on the extended matrix variate power exponential distribution of dependent noise. IEEE Trans Neural Netw Learn Syst 28(9):2168–2182
Cai JF, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. Siam J Optim 20(4):1956–1982
Hale ET, Yin W, Zhang Y (2008) Fixed-point continuation for \(\ell _1\)-minimization: methodology and convergence. Siam J Optim 19(3):1107–1130
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J et al (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122
Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2(1):17–40
Yuan X, Yang J (2013) Sparse and low-rank matrix decomposition via alternating direction methods. Pac J Optim 9(1):167–180
He B, Yang H (1998) Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper Res Lett 23(3–5):151–161
Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698
Qian J, Yang J, Gao G (2013) Discriminative histograms of local dominant orientation (d-hldo) for biometric image feature extraction. Pattern Recognit 46(10):2724–2739
Huang GB, Mattar M, Berg T, Learned-Miller E (2008) Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In: Workshop on faces in ’Real-Life’ images: detection, alignment, and recognition, Marseille, France
Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W (2005) Overview of the face recognition grand challenge. IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:947–954
Gross R, Matthews I, Cohn J, Kanade T, Baker S (2010) Multi-pie. Image Vis Comput 28(5):807–813
Zhang H, Yang J, Shang F, Gong C, Zhang Z (2018) Lrr for subspace segmentation via tractable schatten-\(p\) norm minimization and factorization. IEEE Trans Cybern 49(5):1722–1734
Guan N, Liu T, Zhang Y, Tao D, Davis LS (2017) Truncated cauchy non-negative matrix factorization. IEEE Trans Pattern Anal Mach Intell 41(1):246–259
Acknowledgements
This work is partly supported by The National Key Research and Development Program of China (No.2018YFB1004900) and 111 Project (No.B13022).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A Proof of Theorem 3
Appendix A Proof of Theorem 3
Proof
In view of the fact that \(({{\mathbf{x}}^{*}},{\widetilde{\mathbf{H}}}^{*} ,{\mathbf{T}}^{*},{{\mathbf{Z}}}^{*})\) is a saddle point of L, we have \(L({{\mathbf{x}}^{*}},{\widetilde{\mathbf{H}}}^{*},{\mathbf{T}}^{*},{{\mathbf{Z}}}^{*}) \le L({{\mathbf{x}}_{k+1}},{\widetilde{\mathbf{H}}}_{k+1} ,{\mathbf{T}}_{k+1},{{\mathbf{Z}}}^{*})\), with \({{D}}({{\mathbf{x}}^{*}})-{\widetilde{\mathbf{H}}}^{*} - {\mathbf{T}}^{*} = 0\), and it can be rewritten as follows:
For the sake of derivation, the augmented Lagrangian function of Eq. (5) can be reformulated as \({L_\mu }({\mathbf{x}},{\widetilde{\mathbf{H}}} ,{\mathbf{T}},{{\mathbf{Z}}})= {\Vert {\mathbf{T}} \Vert _F^2} + \lambda {\Vert {\mathbf{H}} - {\widetilde{\mathbf{H}}} \Vert _{*}} +\frac{\beta }{2} \left\| {\mathbf{x}} \right\| _2^{2} +\frac{\mu }{2} \Vert {{D}({\mathbf{x}})-{\widetilde{\mathbf{H}}}} - {\mathbf{T}} +\frac{1}{\mu } {{\mathbf{Z}}}\Vert _F^2-\frac{1 }{2\mu }\Vert {{\mathbf{Z}}}\Vert _F^2\).
\({\mathbf{x}}_{k+1} = \arg \mathop {\min }\limits _{{\mathbf{x}}} {L_\mu }({\mathbf{x}},{\widetilde{\mathbf{H}}}_{k},{\mathbf{T}}_{k},{\mathbf{Z}}_{k})\), which is equivalent to
by virtue of \({{\mathbf{Z}}}_{k+1} ={\mathbf{Z}}_{k} +\mu ({D}({\mathbf{x}}_{k+1})-{\widetilde{\mathbf{H}}}_{k+1} - {\mathbf{T}}_{k+1})\), we can recombine to get
This suggests that \({\mathbf{x}}_{k+1}\) optimizes \(\frac{\beta }{2}\Vert {\mathbf{x}}\Vert _p^p + (\text {Vec} ({\mathbf{Z}}_{k+1}) +\mu \text {Vec}({\widetilde{\mathbf{H}}}_{k+1}-{\widetilde{\mathbf{H}}}_{k})+ \mu \text {Vec}({\mathbf{T}}_{k+1} -{\mathbf{T}}_{k}))^{T}{\mathbf{M}}{\mathbf{x}}\). Similar to the above derivation, we can get the arguments that \({\widetilde{\mathbf{H}}}_{k+1}\) minimizes \(\lambda {\Vert {\mathbf{H}} - {\widetilde{\mathbf{H}}} \Vert _{*}} -\text {Tr}(({\mathbf{Z}}_{k+1} + \mu ({\mathbf{T}}_{k+1}-{\mathbf{T}}_{k}))^{T}{\widetilde{\mathbf{H}}})\), and \({\mathbf{T}}_{k+1}\) minimizes \(\Vert {\mathbf{T}}\Vert _F^2 - \text {Tr}(({\mathbf{Z}}_{k+1})^{T}{\mathbf{T}})\). Hence, we have
Adding these three inequalities, with \({{D}}({{\mathbf{x}}^{*}})-{\widetilde{\mathbf{H}}}^{*} - {\mathbf{T}}^{*} = 0\) and \({\mathbf{R}}_{k+1} = {D}({\mathbf{x}}_{k+1}) -{\widetilde{\mathbf{H}}}_{k+1}- {\mathbf{T}}_{k+1}\), and after regrouping, we obtain
Adding (26) and (27), and rearranging, we can obtain this inequality:
Substituting \({\mathbf{T}}_{k+1}-{\mathbf{T}}^{*}={\mathbf{T}}_{k+1}-{\mathbf{T}}_{k}+{\mathbf{T}}_{k}-{\mathbf{T}}^{*}\) in the fourth term and utilizing \(\text {Vec}^{T}(U)\text {Vec}(V)={\text {Tr}}(U^{T}V)\), where \(\forall ~U, V \in {R}^{s \times t}\), the aforementioned inequality can be rewritten as
Subsequently, it can be proved that the two items on the right side in (28) are both greater than 0. To see this, \({\mathbf{T}}_{k+1}\) minimizes \(\Vert {\mathbf{T}}\Vert _F^2 - \text {Tr}(({\mathbf{Z}}_{k+1})^{T}{\mathbf{T}})\), then \({\mathbf{T}}_{k}\) minimizes \(\Vert {\mathbf{T}}\Vert _F^2 - \text {Tr}(({\mathbf{Z}}_{k})^{T}{\mathbf{T}})\), which are equivalent to
Adding the two inequalities above, taking advantage of \({{\mathbf{Z}}}_{k+1} ={\mathbf{Z}}_{k} +\mu {\mathbf{R}}_{k+1}\) and reorganizing, we get \(\mu \text {Tr} (({\mathbf{T}}_{k+1}- {\mathbf{T}}_{k})^{T}{} \mathbf{{R}_{k+1}}) \ge 0\). Similarly, using the argument that \({\widetilde{\mathbf{H}}}_{k+1}\) minimizes \(\lambda {\Vert {\mathbf{H}} - {\widetilde{\mathbf{H}}} \Vert _{*}} -\text {Tr}(({\mathbf{Z}}_{k+1} + \mu ({\mathbf{T}}_{k+1}-{\mathbf{T}}_{k}))^{T}{\widetilde{\mathbf{H}}})\), we obtain \(\mu \text {Tr} (({\widetilde{\mathbf{H}}}_{k+1}- {\widetilde{\mathbf{H}}}_{k})^{T}({\mathbf{R}}_{k+1}+({\mathbf{T}}_{k+1}-{\mathbf{T}}_{k})) \ge 0\).
In addition, since \({\widetilde{\mathbf{H}}}_{k+1}-{\widetilde{\mathbf{H}}}_{k} ={\widetilde{\mathbf{H}}}_{k+1}-{\widetilde{\mathbf{H}}}^{*}+{\widetilde{\mathbf{H}}}^{*}+{\widetilde{\mathbf{H}}}_{k}\), then
With the previous step and multiplying through by 2, we can transform (28) into the following form
Using \({{\mathbf{Z}}}_{k+1} ={\mathbf{Z}}_{k} +\mu {\mathbf{R}}_{k+1}\) and perfect square expression, (29) can be rewritten as
Let \(V_{k} =\frac{1}{\mu }\Vert {\mathbf{Z}}_{k}-{\mathbf{Z}}^{*}\Vert _F^2+\mu \Vert {\widetilde{\mathbf{H}}}_{k}+{\mathbf{T}}_{k}-{\widetilde{\mathbf{H}}}^{*}-{\mathbf{T}}^{*}\Vert _F^2\) and the inequality (30) can be abbreviated as
This indicates that \(V_{k}\) decreases in each iteration since \(\mu >0\), i.e., \(V_{k+1} \le V_{k}\le V_{0}\). We iterate the inequality (31) and can acquire that
which suggests that \({\mathbf{R}}_{k}\rightarrow 0\), \({\widetilde{\mathbf{H}}}_{k+1}-{\widetilde{\mathbf{H}}}_{k} \rightarrow 0\) and \({\mathbf{T}}_{k+1}-{\mathbf{T}}_{k} \rightarrow 0\) as \(k \rightarrow \infty\) by the monotone bounded theorem. Thus, the right side in (26) and (27) both go to zero as \(k \rightarrow \infty\). Further, we can get that \(\lim \nolimits _{k \rightarrow \infty } f_{k} =f^{*}\).
That is, \(\lim \nolimits _{k \rightarrow \infty }({\Vert {\mathbf{T}}_{k} \Vert _F^2} + \lambda {\Vert {\mathbf{H}} - {\widetilde{\mathbf{H}}}_{k} \Vert _{*}} +\beta /2\left\| {\mathbf{x}}_{k} \right\| _p^p) = {\Vert {\mathbf{T}}^{*} \Vert _F^2} + \lambda {\Vert {\mathbf{H}} - {\widetilde{\mathbf{H}}}^{*} \Vert _{*}} +\beta /2 \left\| {\mathbf{x}}^{*} \right\| _p^p\), which implies that \(({\mathbf{x}}_{k},{\widetilde{\mathbf{H}}}_{k},{\mathbf{T}}_{k})\) is close to \(({\mathbf{x}}^{*},{\widetilde{\mathbf{H}}}^{*}, {\mathbf{T}}^{*})\) as \(k \rightarrow \infty\). By previous analysis and \({\mathbf{Z}}_{k}\rightarrow {{\mathbf{Z}}}^{*}\), we have \(\lim \nolimits _{k \rightarrow \infty } {V_{k}} =\lim \nolimits _{k \rightarrow \infty }(\frac{1}{\mu }\Vert {\mathbf{Z}}_{k}-{\mathbf{Z}}^{*}\Vert _F^2+\mu \Vert {\widetilde{\mathbf{H}}}_{k}+{\mathbf{T}}_{k}-{\widetilde{\mathbf{H}}}^{*}-{\mathbf{T}}^{*}\Vert _F^2) = 0\). Thus, \({\widetilde{\mathbf{H}}}_{k}+{\mathbf{T}}_{k}-{\widetilde{\mathbf{H}}}^{*}-{\mathbf{T}}^{*} \rightarrow 0\). Evidently, \(\text {Tr}(({\widetilde{\mathbf{H}}}_{k}-{\widetilde{\mathbf{H}}}^{*})^{T}({\mathbf{T}}_{k}-{\mathbf{T}}^{*}) \ge 0\), then
Therefore, \({\widetilde{\mathbf{H}}}_{k}\rightarrow {\widetilde{\mathbf{H}}}^{*}\) and \({\mathbf{T}}_{k}\rightarrow {\mathbf{T}}^{*}\) by squeeze rule. In virtue of the formula \(\lim \nolimits _{k \rightarrow \infty } f_{k} =f^{*}\), we can derive \({\mathbf{x}}_{k}\rightarrow {\mathbf{x}}^{*}\). \(\square\)
Rights and permissions
About this article
Cite this article
Sang, X., Xu, Y., Lu, H. et al. Robust mixed-norm constrained regression with application to face recognitions. Neural Comput & Applic 32, 17551–17567 (2020). https://doi.org/10.1007/s00521-020-04925-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-020-04925-4