Skip to main content
Log in

Performance evaluation of low resolution visual tracking for unmanned aerial vehicles

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Several datasets for unmanned aerial vehicle (UAV) visual tracking research have been released in recent years. Despite their usefulness, whether they are sufficient for understanding the strengths and weakness of different resolution videos tracking remains questionable. Tracking in low resolution videos is a critical problem in UAV tracking. To address this issue, we construct a group of low resolution tracking datasets and study the performance of different trackers on these datasets. We find that some trackers suffered more performance degradation than others, which brings to light a previously unexplored aspect of the tracking methods. The relative rank of these trackers based on their tracking results on the datasets may change in the presence of low resolution. Based on these findings, we develop a multiple feature tracking framework which takes advantage of image enhancement scheme to improve image quality. In addition, we utilize the forward and backward tracking to evaluate multiple feature tracking results. Experimental results demonstrate that our tracker is competitive in performance to state-of-the-art methods in different resolutions scenarios. We believe our studies can provide a solid baseline when conducting experiments for low resolution UAV tracking research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mueller M, Smith N, Ghanem B (2016) A benchmark and simulator for UAV tracking. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision – ECCV 2016, vol 9905. Lecture notes in computer science. Springer, Cham

    Chapter  Google Scholar 

  2. Siyi L, Yeung D-Y (2017) Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models. AAAI 122:4140–4146

    Google Scholar 

  3. Dawei D, Qi Y, Yu H, Yang Y, Duan K, Li G, Zhang W, Huang Q, Tian Q (2018) The unmanned aerial vehicle benchmark: object detection and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 370–386

  4. Pengfei Z, Wen L, Bian X, Ling H, Hu Q (2018) Vision meets drones: a challenge, pp 1–11. arXiv Prepr, arXiv:1804.07437

  5. Lu D, Yong W, Robert L, Xin-Bin L, Fu S (2018) Scale-aware RPN for vehicle detection. ISVC 12:487–499

    Google Scholar 

  6. Jianan L, Xiaodan L, ShengMei S, Xu T, Jiashi F, Yan S (2017) Scale-aware fast R-CNN for pedestrian detection. IEEE Trans Multimed 20(4):985–996

    Google Scholar 

  7. Jiang N, Heng S, Liu W, Ying W (2012) Discriminative metric preservation for tracking low-resolution targets. IEEE Trans Image Process 21(3):1284–1297

    Article  MathSciNet  Google Scholar 

  8. Zhiguan L, Yuan C (2018) Robust visual tracking in low-resolution sequence. In: 25th IEEE International Conference on image processing (ICIP), IEEE, pp 4103–4107

  9. Martin D, Bhat G, Khan FS, Felsberg M (2017) ECO: efficient convolution operators for tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6638–6646

  10. Fang Y, Yuan Y, Li L, Jinjian W, Lin W, Li Z (2017) Performance evaluation of visual tracking algorithms on video sequences with quality degradation. IEEE Access 5:2430–2441

    Article  Google Scholar 

  11. Navneet D, Triggs B (2005) Histograms of oriented gradients for human detection. In: International Conference on computer vision pattern recognition (CVPR’05), IEEE Computer Society, vol 1, pp 886–893

  12. Ning W, Zhou W, Tian Q, Hong R, Wang M, Li H (2018) Multi-cue correlation filters for robust visual tracking. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 4844–4853

  13. Ma C, Huang J-B, Yang X, Yang M-H (2015) Hierarchical convolutional features for visual tracking. Proc IEEE Int Conf Comput Vis 2102:3074–3082

    Google Scholar 

  14. Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G, Vojr T, Hager G, Nebehay G, Pflugfelder R (2015) The visual object tracking VOT2015 challenge results. Proc IEEE Int Conf Comput Vis Workshop 2015:564–586

  15. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  Google Scholar 

  16. Lu Z, Long B, Li K, Fajin L (2018) Effective guided image filtering for contrast enhancement. IEEE Signal Process Lett 25(10):1585–1589

    Article  Google Scholar 

  17. Guo X, Li Y, Ma J, Ling H (2020) Mutually guided image filtering. IEEE Trans Pattern Anal Mach Intell 42(3):694–707

    Article  Google Scholar 

  18. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. TPAMI 36(7):1442–1468

    Article  Google Scholar 

  19. Wu Y, Lim J, Yang M-H (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848

    Article  Google Scholar 

  20. Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Cehovin L, Vojr T, Hager G, Lukezic A, Fernandez G (2016) The visual object tracking VOT2016 challenge results. Proc Eur Conf Comput Vis Workshop 9914:777–823

    Google Scholar 

  21. Liang P, Blasch E, Ling H (2015) Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans Image Process 24(12):5630–5644

    Article  MathSciNet  Google Scholar 

  22. Fan H, Lin L, Yang F, Chu P, Deng G, Yu S, Bai H, Xu Y, Liao C, Ling H (2019) LaSOT: a high-quality benchmark for large-scale single object tracking. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)

  23. Yong W, Robert L, Daniel L, Ors AO, Xu X, Zhu C (2018) Deep convolutional correlation filters for forward-backward visual tracking. ISVC 132:320–331

    Google Scholar 

  24. Qi Y, Zhang S, Qin L, Yao H, Huang Q, Lim J, Yang M-H (2016) Hedged deep tracking. Proc IEEE Conf Comput Vis Pattern Recogn 9810:4303–4311

    Google Scholar 

  25. Feng L, Tian C, Zuo W, Zhang L, Yang M-H (2018) Learning spatial-temporal regularized correlation filters for visual tracking. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 4904–4913

  26. Sun Z, Wang Y, Laganiere R (2019) Hard negative mining for correlation filters in visual tracking. Mach Vis Appl 30(3):487–506

    Article  Google Scholar 

  27. Bolme DS, Beveridge JR, Draper B, Lui YM (2010) Visual object tracking using adaptive correlation filters. Proc IEEE Conf Comput Vis Pattern Recogn 9123:2544–2550

    Google Scholar 

  28. Henriques J, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  29. Danelljan M, Häger G, Khan FS, Felsberg M (2017) Discriminative scale space tracking. IEEE Trans Pattern Anal Machine Intell 39(8):1561–1575

    Article  Google Scholar 

  30. Luca B, Valmadre J, Golodetz S, Miksik O, Torr HSP (2016) Staple: complementary learners for real-time tracking. CVPR 8943:1401–1409

    Google Scholar 

  31. Danelljan M, Hager G, Khan FS, Felsberg M (2016) Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. Proc IEEE Conf Comput Vis Pattern Recogn 8930:1430–1438

    Google Scholar 

  32. Danelljan M, Hager G, Khan FS, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. Proc IEEE Int Conf Comput Vis 9420:4310–4318

    Google Scholar 

  33. Collins R, Zhou X, Teh SK (2005) An open source tracking testbed and evaluation web site. In: IEEE Int workshop on performance evaluation of tracking and surveillance, pp 17–24

  34. Galoogahi K, Fagg HA, Lucey S (2017) Learning background-aware correlation filters for visual tracking. In: Proceedings of the IEEE Conference on ICCV, pp 1135–1143

  35. Ning W, Wengang Z, Li H (2018) Reliable re-detection for long-term tracking. In: IEEE transactions on circuits and systems for video technology

  36. Danelljan M, Khan FS, Felsberg M, van de Weijer J (2014) Adaptive color attributes for real-time visual tracking. Proc IEEE Conf Comput Vis Pattern Recogn 9872:1090–1097

    Google Scholar 

  37. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  38. Wei X, Shen H, Kleinsteuber M (2019) Trace quotient with sparsity priors for learning low dimensional image representations. In: IEEE transactions on pattern analysis and machine intelligence, pp 1–17

  39. Wang Y, Shiqiang H, Shandong W (2015) Visual tracking based on group sparsity learning. Mach Vis Appl 26(1):127–139

    Article  Google Scholar 

  40. Kim H-U, Lee D-Y, Sim J-Y, Kim C-S (2015) Sowp: spatially ordered and weighted patch descriptor for visual tracking. In: Proceedings of IEEE International Conference on computer vision

  41. Li C, Lin L, Zuo W et al (2018) Visual tracking via dynamic graph learning. IEEE Trans Pattern Anal Mach Intell 41(11):2770–2782

    Article  Google Scholar 

  42. Li C, Liang X, Lu Y, Zhao N, Tang J (2019) RGB-T object tracking: benchmark and baseline. Pattern Recognit 96:106977

    Article  Google Scholar 

  43. Danelljan M, Hager G, Khan F, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: British machine vision conference, Nottingham, September 1–5, BMVA Press

Download references

Acknowledgement

This work was partially supported by National Science Found for Young Scholars under Grant No. 61806186, State Key Laboratory of Robotics and System (HIT) under Grant No. SKLRS-2019-KF-15, the program ‘Construction of Fujian Research Institute on Intelligent Logistics Industry Technology’ under Grant No. 2018H2001, CAS Pioneer Hundred Talents Program (Type C) under Grant No. 2017-122, and the program ‘Quanzhou Science and Technology Plan’ under Grant No. 2019C112, No. 2019C011R and No. 2019STS08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Wei.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wei, X., Shen, H. et al. Performance evaluation of low resolution visual tracking for unmanned aerial vehicles. Neural Comput & Applic 33, 2229–2248 (2021). https://doi.org/10.1007/s00521-020-05067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05067-3

Keywords

Navigation