Abstract
Classification is one of the most important task in hyperspectral image processing. In the last few decades, several classification techniques have been introduced. However, most of them could not efficiently extract features from hyperspectral images (HSI). A novel deep learning framework is proposed in this paper which efficiently utilises convolutional neural network (CNN) and spatial pyramid pooling (SPP) for extracting both the spectral–spatial features for classification. The proposed hybrid framework uses principal component analysis (PCA), 3D-CNN, 2D-CNN and SPP. The proposed CNN-based model is applied on three benchmark hyperspectral datasets, and subsequently the performance is compared with state-of-the-art methods in the same field. The obtained results reveal the superiority of the proposed model in effectively classifying HSI.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chang C (2007) Hyperspectral data exploitation: theory and applications. Wiley, New York
Ghamisi P, Yokoya N, Li J et al (2017) Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci Remote Sens Mag 5:37–78. https://doi.org/10.1109/MGRS.2017.2762087
Mishra NB, Crews KA (2014) Mapping vegetation morphology types in a dry savanna ecosystem: integrating hierarchical object-based image analysis with random forest. Int J Remote Sens 35:1175–1198. https://doi.org/10.1080/01431161.2013.876120
Cheng G, Han J, Lu X (2017) Remote sensing image scene classification: benchmark and state of the art. Proc IEEE 105:1865–1883. https://doi.org/10.1109/JPROC.2017.2675998
Chen Y, Liu L, Gong Z, Zhong P (2017) Learning CNN to pair UAV video image patches. IEEE J Sel Top Appl Earth Obs Remote Sens 10:5752–5768. https://doi.org/10.1109/JSTARS.2017.2740898
Horig B, Kuhn F, Oschutz F, Lehmann F (2001) HyMap hyperspectral remote sensing to detect hydrocarbons. Int J Remote Sens 22:1413–1422. https://doi.org/10.1080/01431160120909
Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 International geoscience and remote sensing symposium. pp 4959–4962. https://doi.org/10.1109/IGARSS.2015.7326945
Lixin G, Weixin X, Jihong P (2015) Segmented minimum noise fraction transformation for efficient feature extraction of hyperspectral images. Pattern Recognit 48:3216–3226. https://doi.org/10.1016/j.patcog.2015.04.013
Camps-valls G, Tuia D, Bruzzone L, Benediktsson JA (2013) Advances in hyperspectral image classification. IEEE Signal Process Mag 31:45–54. https://doi.org/10.1109/MSP.2013.2279179
Yang J, Qian J (2018) Hyperspectral image classification via multiscale joint collaborative representation with locally adaptive dictionary. IEEE Geosci Remote Sens Lett 15:112–116. https://doi.org/10.1109/lgrs.2017.2776113
Fang L, He N, Li S et al (2018) A new spatial-spectral feature extraction method for hyperspectral images using local covariance matrix representation. IEEE Trans Geosci Remote Sens 56:3534–3546. https://doi.org/10.1109/TGRS.2018.2801387
Fu Z, Qin Q, Luo B et al (2019) A local feature descriptor based on combination of structure and texture information for multispectral image matching. IEEE Geosci Remote Sens Lett 16:100–104. https://doi.org/10.1109/LGRS.2018.2867635
Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42:1778–1790. https://doi.org/10.1109/TGRS.2004.831865
Ham JS, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43:492–501. https://doi.org/10.1109/TGRS.2004.842481
Marpu PR, Pedergnana M, Dalla Mura M et al (2013) Automatic generation of standard deviation attribute profiles for spectral-spatial classification of remote sensing data. IEEE Geosci Remote Sens Lett 10:293–297. https://doi.org/10.1109/LGRS.2012.2203784
Kang X, Li S, Benediktsson JA (2013) Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans Geosci Remote Sens 52:2666–2677. https://doi.org/10.1109/TGRS.2013.2264508
Kang X, Li S, Fang L et al (2015) Extended random walker-based classification of hyperspectral images. IEEE Trans Geosci Remote Sens 53:144–153. https://doi.org/10.1109/TGRS.2014.2319373
Li S, Song W, Fang L et al (2019) Deep learning for hyperspectral image classification: an overview. IEEE Trans Geosci Remote Sens 57:6690–6709. https://doi.org/10.1109/TGRS.2019.2907932
Shi C, Pun CM (2018) Superpixel-based 3D deep neural networks for hyperspectral image classification. Pattern Recognit 74:600–616. https://doi.org/10.1016/j.patcog.2017.09.007
Nogueira K, Penatti OAB, dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit 61:539–556. https://doi.org/10.1016/j.patcog.2016.07.001
Ribeiro M, Lazzaretti AE, Lopes HS (2018) A study of deep convolutional auto-encoders for anomaly detection in videos. Pattern Recognit Lett 105:13–22. https://doi.org/10.1016/j.patrec.2017.07.016
Salakhutdinov R, Hinton G (2009) Deep Boltzmann machines. J Mach Learn Res 5:448–455
Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527
Paoletti ME, Haut JM, Fernandez-Beltran R et al (2019) Capsule networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57:2145–2160. https://doi.org/10.1109/TGRS.2018.2871782
Niu Z, Liu W, Zhao J, Jiang G (2019) DeepLab-based spatial feature extraction for hyperspectral image classification. IEEE Geosci Remote Sens Lett 16:251–255. https://doi.org/10.1109/LGRS.2018.2871507
Paoletti ME, Haut JM, Fernandez-Beltran R et al (2019) Deep pyramidal residual networks for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 57:740–754. https://doi.org/10.1109/TGRS.2018.2860125
Ma X, Fu A, Wang J et al (2018) Hyperspectral image classification based on deep deconvolution network with skip architecture. IEEE Trans Geosci Remote Sens 56:4781–4791. https://doi.org/10.1109/IGARSS.2016.7729850
Li Y, Xie W, Li H (2017) Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recognit 63:371–383. https://doi.org/10.1016/j.patcog.2016.10.019
Chen Y, Li C, Ghamisi P et al (2017) Deep fusion of remote sensing data for accurate classification. IEEE Geosci Remote Sens Lett 14:1253–1257. https://doi.org/10.1109/LGRS.2017.2704625
He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision. pp 2980–2988. https://doi.org/10.1109/ICCV.2017.322
Kang X, Zhuo B, Duan P (2019) Dual-path network-based hyperspectral image classification. IEEE Geosci Remote Sens Lett 16:447–451. https://doi.org/10.1109/LGRS.2018.2873476
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. pp 770–778. https://doi.org/10.1109/CVPR.2016.90
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243
Chen Y, Zhao X, Jia X (2015) Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J Sel Top Appl Earth Obs Remote Sens 8:2381–2392. https://doi.org/10.1109/JSTARS.2015.2388577
Chen Y, Zhu L, Ghamisi P et al (2017) Hyperspectral images classification with gabor filtering and convolutional neural network. IEEE Geosci Remote Sens Lett 14:2355–2359. https://doi.org/10.1109/LGRS.2017.2764915
Zhong Z, Li J, Luo Z, Chapman M (2018) Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans Geosci Remote Sens 56:847–858. https://doi.org/10.1109/TGRS.2017.2755542
Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2019) HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17:277–281. https://doi.org/10.1109/lgrs.2019.2918719
Yue J, Mao S, Li M (2016) A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens Lett 7:875–884. https://doi.org/10.1080/2150704X.2016.1193793
Li N, Wang C, Zhao H et al (2018) A novel deep convolutional neural network for spectral-spatial classification of hyperspectral data. Int Arch Photogramm Remote Sens Spat Inf Sci - ISPRS Arch 42:897–900. https://doi.org/10.5194/isprs-archives-XLII-3-897-2018
Hu W, Huang Y, Wei L et al (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens 2015:1–12. https://doi.org/10.1155/2015/258619
Khan S, Rahmani H, Shah SAA, Bennamoun M (2018) A Guide to convolutional neural networks for computer vision. Morgan & Claypool Publishers, San Rafael
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv Prepr arXiv14091556 1–14
Han X, Zhong Y, Cao L, Zhang L (2017) Pre-trained alexnet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification. Remote Sens 9:848. https://doi.org/10.3390/rs9080848
Ben Hamida A, Benoit A, Lambert P, Ben Amar C (2018) 3-D deep learning approach for remote sensing image classification. IEEE Trans Geosci Remote Sens 56:4420–4434. https://doi.org/10.1109/TGRS.2018.2818945
Acknowledgements
The authors acknowledge the support of CGM RCs, NRSC, ISRO, and Head (applications), RRSC-East, NRSC, ISRO, for carrying out the present work. The authors also acknowledge the collaboration extended by VC, MAKAUT, towards the work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Paul, A., Bhoumik, S. & Chaki, N. SSNET: an improved deep hybrid network for hyperspectral image classification. Neural Comput & Applic 33, 1575–1585 (2021). https://doi.org/10.1007/s00521-020-05069-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-020-05069-1