Skip to main content
Log in

Robust speed prediction of high-speed trains based on improved echo state networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The accurate and robust speed prediction of high-speed trains (HSTs) is a challenging task in the automatic train operation (ATO) because HSTs operate in an open-air situation with much noise and many uncertainties. This paper contributes to the development of robust speed prediction methods for the ATO of HSTs based on improved echo state networks (ESNs). Firstly, an adaptive temporal scale selection approach is introduced to improve the accuracy and efficiency of ESN modeling, due to the importance of proper temporal scale selection in relation to the sound prediction performance of ESNs. Also, a random weight scaling mechanism is employed to enhance the feasibility and robustness of the proposed method, as the learning ability of ESNs lies in the constrained random connection weights. Furthermore, several conditions for the stability of the closed-loop control system are given. Our experiment results demonstrate that the proposed method successfully achieves sound performance in terms of speed prediction accuracy, efficiency and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang H, Fu YT, Wang DH (2018) Multi-ANFIS model based synchronous tracking control of high-speed electric multiple unit. IEEE Trans Fuzzy Syst 26(3):1472–1484

    Article  Google Scholar 

  2. Dong HR, Ning B, Cai BG, Hou ZS (2010) Automatic train control system development and simulation for high-speed railways. IEEE Circ Syst Mag 10(2):6–18

    Article  Google Scholar 

  3. Fu YT, Yang H, Wang DH (2017) Real-time optimal control of tracking running for high-speed electric multiple unit. Inf Sci 376:202–215

    Article  Google Scholar 

  4. Sun HQ, Hou ZS, Li DY (2012) Coordinated iterative learning control schemes for train trajectory tracking with overspeed protection. IEEE Trans Autom Sci Eng 10(2):323–333

    Article  Google Scholar 

  5. Yang H, Fu YT, Zhang KP, Li ZQ (2014) Speed tracking control using an ANFIS model for high-speed electric multiple unit. Control Eng Pract 23:57–65

    Article  Google Scholar 

  6. Ji HH, Hou ZS, Zhang RK (2015) Adaptive iterative learning control for high-speed trains with unknown speed delays and input saturations. IEEE Trans Autom Sci Eng 13(1):260–273

    Article  Google Scholar 

  7. Song Q, Song YD, Cai WC (2011) Adaptive backstepping control of train systems with traction/braking dynamics and uncertain resistive forces. Vehicle Syst Dyn 49(9):1441–1454

    Article  Google Scholar 

  8. Song Q, Song YD, Tang T, Ning B (2011) Computationally inexpensive tracking control of high-speed trains with traction/braking saturation. IEEE Trans Intell Transp Syst 12(4):1116–1125

    Article  Google Scholar 

  9. Feng XS (2011) Optimization of target speeds of high-speed railway trains for traction energy saving and transport efficiency improvement. Energy Policy 39(12):7658–7665

    Article  Google Scholar 

  10. Yang H, Liu HE, Fu YT (2015) Multi-objective operation optimization for electric multiple unit-based on speed restriction mutation. Neurocomputing 169:383–391

    Article  Google Scholar 

  11. Raghunathan RS, Kim HD, Setoguchi T (2002) Aerodynamics of high-speed railway train. Prog Aerosp Sci 38(6–7):469–514

    Article  Google Scholar 

  12. Baker C (2010) The flow around high speed trains. J Wind Eng Ind Aerod 98(6–7):277–298

    Article  Google Scholar 

  13. Song Q, Song YD (2011) Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures. IEEE Trans Neural Netw Learn Syst 22(12):2250–2261

    Article  Google Scholar 

  14. Gao RZ, Wang YJ, Lai JF, Gao H (2016) Neuro-adaptive fault-tolerant control of high speed trains under traction-braking failures using self-structuring neural networks. Inf Sci 367:449–462

    Article  Google Scholar 

  15. Yang H, Zhang KP, Liu HE (2016) Online regulation of high speed train trajectory control based on TS fuzzy bilinear model. IEEE Trans Intell Transp Syst 17(6):1496–1508

    Article  Google Scholar 

  16. Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80

    Article  Google Scholar 

  17. Xing K, Wang Y, Zhu Q, Zhou H (2012) Modeling and control of McKibben artificial muscle enhanced with echo state networks. Control Eng Pract 20(5):477–488

    Article  Google Scholar 

  18. Li Q, Zhou W, Xia XH (2018) Estimate and characterize PV power at demand-side hybrid system. Appl Energy 218:66–77

    Article  Google Scholar 

  19. Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural networks-with an erratum note, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, vol 34, p 13

  20. Jaeger H, LukosEvicIus M, Popovici D, Siewert U (2007) Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw 20(3):335–352

    Article  Google Scholar 

  21. McDermott PL, Wikle CK (2017) An ensemble quadratic echo state network for nonlinear spatio-temporal forecasting. Stat 6(1):315–330

    Article  MathSciNet  Google Scholar 

  22. Buonomano DV, Merzenich MM (1995) Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267(5200):1028–1030

    Article  Google Scholar 

  23. Reshef DN, Reshef YA, Finucane HK et al (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524

    Article  Google Scholar 

  24. Bomberger JD, Seborg DE (1998) Determination of model order for NARX models directly from input–output data. J Process Control 8(5–6):459–468

    Article  Google Scholar 

  25. Feil B, Abonyi J, Szeifert F (2004) Model order selection of nonlinear input–output models-a clustering based approach. J Process Control 14(6):593–602

    Article  Google Scholar 

  26. Wang DH, Li M (2017) Stochastic configuration networks: fundamentals and algorithms. IEEE Trans Cybern 47(10):3466–3479

    Article  Google Scholar 

  27. Wang DH, Liu HE, Yang H (2020) Improved echo state networks with scaling random weight matrices, Technical Report LTU-2020, 18 May 2020

  28. Buehner M, Young P (2006) A tighter bound for the echo state property. IEEE Trans Neural Netw Learn Syst 17(3):820–824

    Article  Google Scholar 

  29. Zhang B, Miller DJ, Wang Y (2012) Nonlinear system modeling with random matrices: echo state networks revisited. IEEE Trans Neural Netw Learn Syst 23(1):175–182

    Article  Google Scholar 

  30. Ozturk MC, Xu D, Príncipe JC (2007) Analysis and design of echo state networks. Neural Comput 19(1):111–138

    Article  Google Scholar 

  31. Strauss T, Wustlich W, Labahn R (2012) Design strategies for weight matrices of echo state networks. Neural Comput 24(12):3246–3276

    Article  MathSciNet  Google Scholar 

  32. Funahashi KI, Nakamura Y (1993) Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw 6(6):801–806

    Article  Google Scholar 

  33. LukosEvicIus M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149

    Article  Google Scholar 

  34. El Hihi S, Bengio Y (1996) Hierarchical recurrent neural networks for long-term dependencies, In: Advances in neural information processing systems, pp 493–499

  35. Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering. IEEE Trans Pattern Anal 11(7):773–780

    Article  Google Scholar 

  36. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans Evolut Comput 6(1):58–73

    Article  Google Scholar 

  37. Hu M, Wu T, Weir JD (2013) An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evolut Comput 17(5):705–720

    Article  Google Scholar 

  38. Jiang M, Luo YP, Yang SY (2007) Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf Process Lett 102(1):8–16

    Article  MathSciNet  Google Scholar 

  39. Wang SY (1993) Existence of a Pareto equilibrium. J Optim Theory Appl 79(2):373–384

    Article  MathSciNet  Google Scholar 

  40. Valerio D, Trujillo JJ, Rivero M, Machado JT, Baleanu D (2013) Fractional calculus: a survey of useful formulas. Eur Phys J Spec Top 222(8):1827–1846

    Article  Google Scholar 

  41. Rakkiyappan R, Cao J, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26(1):84–97

    Article  MathSciNet  Google Scholar 

  42. Pahnehkolaei SM, Alfi A, Machado JT (2017) Uniform stability of fractional-order leaky integrator echo state neural network with multiple time delays. Inf Sci 418:703–716

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61673172, 61663013, 61733005, by State Key Laboratory of Synthetical Automation for Process Industries under Grant PAL-N201801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proof

Suppose \(\mathbf{{x}}(t) = [{x_1}(t),{x_2}(t), \ldots ,{x_n}(t)]\), \({\mathbf{{x}}^\mathrm{{o}}}(t) = [{x^o}_1(t),{x^o}_2(t), \ldots ,{x^o}_n(t)]\) are two solutions of the system defined in (33), \({x_i}(t) = \xi (t):[ - {t_d},0] \rightarrow \mathbf{{R}}\) and \({x_i}^ \circ (t) = \eta (t):[ - {t_d},0] \rightarrow \mathbf{{R}}\), \(\mathrm{{i = 1,2,}}\ldots \mathrm{{,n}}\), where \(\xi (t)\) and \(\eta (t)\) denote two different initial conditions for the system. Besides, let \(\gamma \) and \(\sigma \) be two time measuring scales satisfying that \(\gamma - \phi _1\sigma = t - k\tau \) and \(\gamma - \phi _2\sigma = t-\mu \tau \) with \(\phi _1, \phi _2 \in \mathbf{Z} \). According to Definition 1 and (33), we have

$$\begin{aligned} \begin{array}{l} {I^\alpha }{D^\alpha }\left( {{x_i}(t) - {x^ \circ }_i(t)} \right) = \left( {{\xi _i}(0) - {\eta _i}(0)} \right) \mathrm{{ + }}\frac{1}{{\Gamma (\alpha )}}\int _0^t {{{(t - \tau )}^{\alpha - 1}}} \\ \quad \left\{ {f\left( {\sum \limits _{h = 1}^{{P_r}} {\sum \limits _{k = 1}^{{T_s}} {{\lambda _1}\left( {w_{h,k}^{in}{z_{h,k}}(t - k\tau ) + {b_0}} \right) } } } \right. } \right. \mathrm{{ + }}\left. {\sum \limits _{l = 1}^L {{\lambda _2}{w_l}{{x}^ \circ }{{_{i,}}_l}(t - \mu \tau )} } \right) \\ \quad - f\left( {\sum \limits _{h = 1}^{{P_r}} {\sum \limits _{k = 1}^{{T_s}} {{\lambda _1}\left( {w_{h,k}^{in}{z_{h,k}}(t - k\tau ) + {b_0}} \right) } } } \right. \left. {\left. {\mathrm{{ + }}\sum \limits _{l = 1}^L {{\lambda _2}{w_l}{{x}_{i,}}_l(t - \mu \tau )} } \right) } \right\} \mathrm{{d}}\tau \end{array} \end{aligned}$$
(37)

Here, let us set \(\alpha \in (0,1)\). Then, from Assumption 1, Definition 2 and the properties of fractional operators [41, 42], we have

$$\begin{aligned} \begin{array}{l} {{e}^{ - t}}\left| {{x_i}(t) - {x^ \circ }_i(t)} \right| \le {{e}^{ - t}}\left| {{\xi _i}(0) - {\eta _i}(0)} \right| \\ \quad \mathrm{{ + }}\sum \limits _{l = 1}^L {\left| {{\lambda _2}{w_l}} \right| \frac{1}{{\Gamma (\alpha )}}\int _0^t {{{(t - \gamma )}^{\alpha - 1}}} {\mathrm{{C}}_f}{{e}^{ - t}}\left| {{{x}_{i,l}}(t - \mu ) - {{x}^ \circ }_{i,l}(t - \mu )} \right| } {d_\tau } \end{array} \end{aligned}$$
(38)

where e is the system tracking error. Define \(\theta = \gamma - {\phi _2}\sigma \), thus (38) can be rewritten as follows:

$$\begin{aligned} \begin{array}{l} {e^{ - t}}\left| {{x_i}(t) - {x^ \circ }_i(t)} \right| \le {e^{ - t}}\left| {{\xi _i}(0) - {\eta _i}(0)} \right| \\ + \sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| \frac{1}{{\Gamma (\alpha )}}\int _{ - \mu }^{t - \mu } {{{(t - \theta - \mu )}^{\alpha - 1}}} {e^{ - t}}\left| {{{x}_{i,l}}(\theta ) - {{x}^ \circ }_{i,l}(\theta )} \right| } {d_\theta } \end{array} \end{aligned}$$
(39)

Let \(\beta = t - \theta - {\phi _2}\sigma \) and extend the integrals of (38), then (39) can be rewritten as

$$\begin{aligned} \begin{array}{l} {{e}^{ - t}}\left| {{x_i}(t) - {x^ \circ }_i(t)} \right| \le {{e}^{ - t}}\left| {{\xi _i}(0) - {\eta _i}(0)} \right| \\ + \sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{e}^{ - {\phi _2}\sigma }}\frac{1}{{\Gamma (\alpha )}}\left\{ {\int _{\mathrm{{t - }}{\phi _2}\sigma }^t {{{(\beta )}^{\alpha - 1}}} {{e}^{ - \beta }}{d_\beta }} \right\} } {\sup _{t \in ( - {\phi _2}\sigma ,0]}}\left( {{{e}^{ - t}}\left| {{\xi _i}(t) - {\eta _i}(t)} \right| } \right) \\ + \sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{e}^{ - {\phi _2}\sigma }}\frac{1}{{\Gamma (\alpha )}}\left\{ {\int _0^{t - {\phi _2}\sigma } {{{(\beta )}^{\alpha - 1}}} {{e}^{ - \beta }}{d_\beta }} \right\} } {\sup _{t \in (0,t - {\phi _2}\sigma ]}}\left( {{{e}^{ - t}}\left| {{{x}_{i,l}}(t) - {{x}^ \circ }_{i,l}(t)} \right| } \right) \end{array} \end{aligned}$$
(40)

From Euler’s gamma function,

$$\begin{aligned} \Gamma (\alpha ) = \int _0^\infty {{e^{ - t}}{t^{\alpha - 1}}{d_t}} \end{aligned}$$
(41)

then (40) can be rewritten as

$$\begin{aligned} \begin{array}{l} {{e}^{ - t}}\left| {{x_i}(t) - {x^ \circ }_i(t)} \right| \le {{e}^{ - t}}\left| {{\xi _i}(0) - {\eta _i}(0)} \right| \\ \begin{array}{*{20}{c}} &\mathrm{{ + }} \end{array}\sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{e}^{ - {\phi _2}\sigma }}{{\sup }_{t \in ( - {\phi _2}\sigma ,0]}}\left( {{{e}^{ - t}}\left| {{\xi _i}(t) - {\eta _i}(t)} \right| } \right) } \\ \begin{array}{*{20}{c}} &\mathrm{{ + }} \end{array}\sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{e}^{ - {\phi _2}\sigma }}{{\sup }_{t \in (0,t - {\phi _2}\sigma ]}}\left( {{{e}^{ - t}}\left| {{{x}_{l,i}}(t) - {{x}^ \circ }_{l,i}(t)} \right| } \right) } \end{array} \end{aligned}$$
(42)

Since \({e^{ - {\phi _2}\sigma }} \in (0,1]\), it derives from (42) that

$$\begin{aligned} \begin{array}{l} {{e}^{ - t}}\left| {{x_i}(t) - {x^ \circ }_i(t)} \right| \le {{e}^{ - t}}\left| {{\xi _i}(0) - {\eta _i}(0)} \right| \\ \begin{array}{*{20}{c}} &\mathrm{{ + }} \end{array}\sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{\sup }_{t \in ( - {\phi _2}\sigma ,0]}}\left( {{{e}^{ - t}}\left| {{\xi _i}(t) - {\eta _i}(t)} \right| } \right) }\\ \begin{array}{*{20}{c}} &\mathrm{{ + }} \end{array}\sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{\sup }_{t \in (0,t - {\phi _2}\sigma ]}}\left( {{{e}^{ - t}}\left| {{{x}_{l,i}}(t) - {{x}^ \circ }_{l,i}(t)} \right| } \right) } \end{array} \end{aligned}$$
(43)

It follows that

$$\begin{aligned} {\sup _{t \in (0,{t_s}]}}\left| {{x}(t) - {{x}^ \circ }(t)} \right| \le {\sup _t}\left| {{x}(t) - {{x}^ \circ }(t)} \right| , 0<{t_s} < t \end{aligned}$$
(44)

thus (43) can be rewritten as

$$\begin{aligned} \begin{array}{l} {e^{ - t}}\left| {{x_i}(t) - {x^ \circ }_i(t)} \right| \le {e^{ - t}}\left| {{\xi _i}(0) - {\eta _i}(0)} \right| \\ \quad + \sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{\sup }_{t \in ( - {\phi _2}\sigma ,0]}}\left( {{e^{ - t}}\left| {{\xi _i}(t) - {\eta _i}(t)} \right| } \right) } \\ \quad + \sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{\sup }_t}\left( {{e^{ - t}}\left| {{{x}_{l,i}}(t) - {{x}^ \circ }_{l,i}(t)} \right| } \right) } \end{array} \end{aligned}$$
(45)

Then, we have

$$\begin{aligned} \begin{array}{l} \left\| {\mathbf{{x}}(t) - {\mathbf{{x}}^ \circ }(t)} \right\| \mathrm{{ = }}\sum \limits _{i = 1}^n {{{\sup }_t}\left( {{e^{ - t}}\left| {{x_i}(t) - {x^ \circ }_i(t)} \right| } \right) } \\ \quad \le \sum \limits _{i = 1}^n {{{\sup }_{t \in ( - {\phi _2}\sigma ,0]}}\left( {{e^{ - t}}\left| {{\xi _i}(0) - {\eta _i}(0)} \right| } \right) }\\ \quad + \sum \limits _{i = 1}^n {\sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{\sup }_{t \in ( - {\phi _2}\sigma ,0]}}\left( {{e^{ - t}}\left| {{\xi _i}(t) - {\eta _i}(t)} \right| } \right) } } \\ \quad + \sum \limits _{i = 1}^n {\sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| {{\sup }_t}\left( {{e^{ - t}}\left| {{{x}_{l,i}}(t) - {{x}^ \circ }_{l,i}(t)} \right| } \right) } } \end{array} \end{aligned}$$
(46)

Subsequently, we can obtain

$$\begin{aligned} \begin{array}{l} \left\| {\mathbf{{x}}(t) - {\mathbf{{x}}^ \circ }(t)} \right\| \le \left\| {{\varvec{\xi }}(t) - {\varvec{\eta }}(t)} \right\| \begin{array}{*{20}{l}} { + \sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| \left\| {{\varvec{\xi }}(t) - {\varvec{\eta }}(t)} \right\| } } \end{array} \\ \qquad + \sum \limits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| \left\| {\mathbf{{x}}(t) - {\mathbf{{x}}^ \circ }(t)} \right\| } \end{array} \end{aligned}$$
(47)

Using (34), we get

$$\begin{aligned} \left\| {\mathbf{{x}}(t) - {\mathbf{{x}}^ \circ }(t)} \right\| \le \frac{{1\mathrm{{ + }}\sum \nolimits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| } }}{{1 - \sum \nolimits _{l = 1}^L {{\mathrm{{C}}_f}\left| {{\lambda _2}{w_l}} \right| } }}\left\| {{\varvec{\xi }}(t) - {\varvec{\eta }}(t)} \right\| \end{aligned}$$
(48)

Thus, for any \(\varepsilon > 0\), there is

$$\begin{aligned} \delta \le \left( {\frac{{1 - \sum \nolimits _{l = 1}^L {{\mathrm{{C}}_\mathrm{{f}}}\left| {{\lambda _2}{w_l}} \right| } }}{{1\mathrm{{ + }}\sum \nolimits _{l = 1}^L {{\mathrm{{C}}_\mathrm{{f}}}\left| {{\lambda _2}{w_l}} \right| } }}} \right) \varepsilon \end{aligned}$$
(49)

such that if \(\left\| {{\varvec{\xi }}(t) - {\varvec{\eta }}(t)} \right\| \le \delta \), then

$$\begin{aligned} \left\| {\mathbf{{x}}(t) - {\mathbf{{x}}^ \circ }(t)} \right\| \le \varepsilon \end{aligned}$$
(50)

holds. Therefore, according to Definition 3, the system is uniformly stable and it converges to the equilibrium point with arbitrary precision. The proof is finished.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, H. & Wang, D. Robust speed prediction of high-speed trains based on improved echo state networks. Neural Comput & Applic 33, 2351–2367 (2021). https://doi.org/10.1007/s00521-020-05096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05096-y

Keywords

Navigation