Skip to main content
Log in

Robust finite-time \(H_{\infty }\) congestion control for a class of AQM network systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work investigates a finite-time \(H_{\infty }\) robust congestion control issue for transmission control protocol network systems. By means of the backstepping technique, finite-time control method and \(H_{\infty }\) control theory, a novel robust \(H_{\infty }\) finite-time controller design approach is presented to guarantee the finite-time convergence of the queue tracking error. Furthermore, the closed-loop network system has an \(L_{2}\) gain less than or equal to a given positive real number. Comparative simulation results show that the proposed control method performs better than the existing control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adams R (2013) Active queue management: a survey. IEEE Commun Surv Tutor 15:1425–1476

    Article  Google Scholar 

  2. Floyd S, Jacobson V (1993) Random early detection gateways for congestion avoidance. IEEE/ACM Trans Netw 1:397–413

    Article  Google Scholar 

  3. Zhou K, Yeung KL, Li VO (2006) Nonlinear RED: a simple yet efficient active queue management scheme. Comput Netw 50:3784–3794

    Article  Google Scholar 

  4. Pei LJ, Mu XW, Wang RM et al (2011) Dynamics of the Internet TCP-RED congestion control system. Nonlinear Anal Real World Appl 12:947–955

    Article  MathSciNet  Google Scholar 

  5. Woo S, Kim K (2010) Tight upper bound for stability of TCP/RED systems in AQM routers. IEEE Commun Lett 14(7):682–684

    Article  Google Scholar 

  6. Mathis M, Semke J, Mahdavi J et al (1997) The macroscopic behavior of the TCP congestion avoidance algorithm. SIGCOMM Comput Commun Rev 27(3):67–82

    Article  Google Scholar 

  7. Low S (2003) A duality model of TCP and queue management algorithms. IEEE/ACM Trans Netw 11(4):525–36

    Article  Google Scholar 

  8. Ajmone MM, Garetto M, Giaccone P et al (2005) Using partial differential equations to model TCP mice and elephants in large IP networks. IEEE/ACM Trans Netw 13(6):1289–301

    Article  Google Scholar 

  9. Misra V, Gong W B, Towsley D (2000) Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. In: Proceedings of the 19th IEEE international conference on SIGCOMM, Stockholm, Sweden, vol 30. no 4, pp 151–160

  10. Hollot C V, Misra V, Towsley D et al (2001) On designing improved controllers for AQM routers supporting TCP flows. In: Proceedings of IEEE INFOCOM, pp 726–1734

  11. Liu Y, Liu XP, Jing YW et al (2018) Adaptive backstepping \( H_{\infty }\) tracking control with prescribed performance for internet congestion. ISA Trans 72:92–99

    Article  Google Scholar 

  12. Wang H, Jing Y, Zhou Y et al (2008) Sliding mode control for uncertain time-delay TCP/AQM network systems. IFAC Proc Vol 41(2):12013–12018

    Article  Google Scholar 

  13. Wang H, Meng B, Jing Y et al (2008) An adaptive fuzzy sliding mode control for AQM systems. In: 2008 American control conference. IEEE, pp 4445–4450

  14. Xu Q, Li F, Sun J, Zukerman M (2015) A new TCP/AQM system analysis. J Netw Comput Appl 57:43–60

    Article  Google Scholar 

  15. Sadek BA, Houssaine TE, Noreddine C (2019) Small-gain theorem and finite-frequency analysis of TCP/AQM system with time varying delay. IET Control Theory Appl 13(13):1971–1982

    Article  Google Scholar 

  16. Weiss L, Infante EF (1965) On the stability of systems defined over a finite time interval. Proc Nat Acad Sci USA 54(1):44

    Article  MathSciNet  Google Scholar 

  17. Tang Y (1998) Terminal sliding mode control for rigid robots. Automatica 34(1):51–56

    Article  MathSciNet  Google Scholar 

  18. Huang X, Lin W, Yang B (2005) Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5):881–888

    Article  MathSciNet  Google Scholar 

  19. Liu H, Wang X, Zhang T (2015) Robust finite-time stability control of a class of high-order uncertain nonlinear systems. Asian J Control 17(3):1081–1087

    Article  MathSciNet  Google Scholar 

  20. Sun Y, Chen B, Lin C et al (2017) Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure. IEEE Trans Cybern 48(10):2774–2782

    Article  Google Scholar 

  21. Wang F, Chen B, Lin C et al (2017) Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans Cybern 48(6):1839–1848

    Article  Google Scholar 

  22. Zong G, Wang R, Zheng W et al (2015) Finite-time \(H_{\infty }\) control for discrete-time switched nonlinear systems with time delay. Int J Robust Nonlinear Control 25(6):914–936

    Article  MathSciNet  Google Scholar 

  23. Liu Y, Jing Y, Chen X (2019) Adaptive neural practically finite-time congestion control for TCP/AQM network. Neurocomputing 351:26–32

    Article  Google Scholar 

  24. Wang K, Jing Y, Liu Y et al (2020) Adaptive finite-time congestion controller design of TCP/AQM systems based on neural network and funnel control. Neural Comput Appl 32: 9471–9478. https://doi.org/10.1007/s00521-019-04459-4

    Article  Google Scholar 

  25. Yang R, Wang Y (2003) Finite-time stability analysis and \( H_{\infty }\) control for a class of nonlinear time-delay Hamiltonian systems. Automatica 49(2):390–401

    Article  MathSciNet  Google Scholar 

  26. Gao M, Sheng L, Zhang W (2015) Stochastic \(H_{2}/H_{\infty }\) control of nonlinear systems with time-delay and state-dependent noise. Appl Math Comput 266:429–440

    MathSciNet  MATH  Google Scholar 

  27. Liu H, Tian X, Wang G et al (2016) Robust \(H_{\infty }\) finite-time stability control of a class of nonlinear systems. Appl Math Model 40(7–8):5111–5122

    Article  MathSciNet  Google Scholar 

  28. Mo LP, Jia YM, Zheng ZM (2009) Finite-time disturbance attenuation of nonlinear systems. Sci China Ser F Inf Sci 52(11):2163

    Article  MathSciNet  Google Scholar 

  29. Yu L, Ma M, Hu W et al (2011) Design of parameter tunable robust controller for active queue management based on \(H_{\infty }\) control theory. J Netw Comput Appl 34(2):750–764

    Article  Google Scholar 

  30. Zheng F, Nelson J (2009) An \(H_{\infty }\) approach to the controller design of AQM routers supporting TCP flows. Automatica 45(3):757–763

    Article  MathSciNet  Google Scholar 

  31. Cui Y, Fei M, Du D (2016) Design of a robust observer-based memoryless \(H_{\infty }\) control for internet congestion. Int J Robust Nonlinear Control 26(8):1732–1747

    Article  MathSciNet  Google Scholar 

  32. Fezazi El N, Haoussi El F, Tissir EH et al (2017) Design of robust \(H_{\infty }\) controllers for congestion control in data networks. J Franklin Inst 354(17):7828–7845

    Article  MathSciNet  Google Scholar 

  33. Fezazi El N (2019) An observer-based controller for congestion control in data networks. J Control Autom Electr Syst 1–12

  34. Xie X, Lam J, Li P (2017) Finite-time \(H_{\infty }\) control of periodic piecewise linear systems. Int J Syst Sci 48(11):2333–2344

    Article  MathSciNet  Google Scholar 

  35. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Funds of China under Grant (61773108), China Scholarship Council (Grant No.201806080067) and the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors appreciate the comments from the anonymous reviewers and Adam Johnson for proofreading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwei Jing.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, X. & Jing, Y. Robust finite-time \(H_{\infty }\) congestion control for a class of AQM network systems. Neural Comput & Applic 33, 3105–3112 (2021). https://doi.org/10.1007/s00521-020-05168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05168-z

Keywords