Skip to main content

Advertisement

Log in

Color face recognition using novel fractional-order multi-channel exponent moments

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Color face recognition has more attention recently since it considered one of the most popular biometric pattern recognitions. With a considerable development in multimedia technologies, finding a suitable color information extraction from color images becomes a hard problem. Several color face recognition methods have been developed. However, these methods still suffer from some limitations, such as increasing the number of extracted features, which leads to an increase in computational time. Besides, among those features some of them are redundant and irrelevant that will influence the quality of the recognition. Therefore, this paper presents a novel color face recognition method that depends on a new family of fractional-order orthogonal functions, which is called orthogonal fractional-order exponent functions. Then, using these functions as the basis functions of novel multi-channel orthogonal fractional-order exponent moments (FrMEMs), these novel descriptors are defined in polar coordinates over the unit circle and have many characteristics. A set of experimental series are performed using a set of well-known color face recognition and compared with other CFR techniques. Besides, a group of feature selection methods with different classifiers used to evaluate the number of extracted features is suitable or needs to be enhanced. Experimental results illustrate that the proposed method based on FrMEMs outperforms other CFR methods. As well as, the recognition rate doesn’t influence by reducing the number of features using different FS methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. http://www.anefian.com/research/face_reco.htm.

References

  1. Gupta S, Buriro A, Crispo B (2019) DriverAuth: behavioral biometric-based driver authentication mechanism for on-demand ride and ridesharing infrastructure. ICT Express 5:16–20. https://doi.org/10.1016/j.icte.2018.01.010

    Article  Google Scholar 

  2. Wang S-L, Liew AW-C (2012) Physiological and behavioral lip biometrics: a comprehensive study of their discriminative power. Pattern Recognit 45:3328–3335. https://doi.org/10.1016/j.patcog.2012.02.016

    Article  Google Scholar 

  3. Jacobs JA, Van Ranst M (2008) Biometric fingerprinting for visa application: device and procedure are risk factors for infection transmission. J Travel Med 15:335–343. https://doi.org/10.1111/j.1708-8305.2008.00232.x

    Article  Google Scholar 

  4. Buddharaju P, Pavlidis IT, Tsiamyrtzis P, Bazakos M (2007) Physiology-based face recognition in the thermal infrared spectrum. IEEE Trans Pattern Anal Mach Intell 29:613–626. https://doi.org/10.1109/TPAMI.2007.1007

    Article  Google Scholar 

  5. Sagonas C, Antonakos E, Tzimiropoulos G et al (2016) 300 Faces in-the-wild challenge: database and results. Image Vis Comput 47:3–18. https://doi.org/10.1016/j.imavis.2016.01.002

    Article  Google Scholar 

  6. Jain AK, Klare B, Park U (2011) Face recognition: some challenges in forensics. In: Face and gesture 2011. IEEE, pp 726–733

  7. Hance GA, Umbaugh SE, Moss RH, Stoecker WV (1996) Unsupervised color image segmentation: with application to skin tumor borders. IEEE Eng Med Biol Mag 15:104–111. https://doi.org/10.1109/51.482850

    Article  Google Scholar 

  8. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42:1778–1790. https://doi.org/10.1109/TGRS.2004.831865

    Article  Google Scholar 

  9. Verma VK, Srivastava S, Jain T, Jain A (2019) Local invariant feature-based gender recognition from facial images. In: Soft computing for problem solving. Springer, Singapore, pp 869–878

    Chapter  Google Scholar 

  10. Hsu R-L, Abdel-Mottaleb M, Jain AK (2002) Face detection in color images. IEEE Trans Pattern Anal Mach Intell 24:696–706. https://doi.org/10.1109/34.1000242

    Article  Google Scholar 

  11. Ebner NC, Riediger M, Lindenberger U (2010) FACES—a database of facial expressions in young, middle-aged, and older women and men: development and validation. Behav Res Methods 42:351–362. https://doi.org/10.3758/BRM.42.1.351

    Article  Google Scholar 

  12. Almabdy S, Elrefaei L (2019) Deep convolutional neural network-based approaches for face recognition. Appl Sci 9:4397. https://doi.org/10.3390/app9204397

    Article  Google Scholar 

  13. Zhang H, Ji Y, Huang W, Liu L (2019) Sitcom-star-based clothing retrieval for video advertising: a deep learning framework. Neural Comput Appl 31:7361–7380. https://doi.org/10.1007/s00521-018-3579-x

    Article  Google Scholar 

  14. Ashir AM, Eleyan A, Akdemir B (2020) Facial expression recognition with dynamic cascaded classifier. Neural Comput Appl 32:6295–6309. https://doi.org/10.1007/s00521-019-04138-4

    Article  Google Scholar 

  15. Sasirekha K, Thangavel K (2019) Optimization of K-nearest neighbor using particle swarm optimization for face recognition. Neural Comput Appl 31:7935–7944. https://doi.org/10.1007/s00521-018-3624-9

    Article  Google Scholar 

  16. Samma H, Suandi SA, Mohamad-Saleh J (2019) Face sketch recognition using a hybrid optimization model. Neural Comput Appl 31:6493–6508. https://doi.org/10.1007/s00521-018-3475-4

    Article  Google Scholar 

  17. Agarwal V, Bhanot S (2018) Radial basis function neural network-based face recognition using firefly algorithm. Neural Comput Appl 30:2643–2660. https://doi.org/10.1007/s00521-017-2874-2

    Article  Google Scholar 

  18. Bharadwaj RR, Belavadi S, Gadicherla S et al (2019) XNORNet and minimum barrier detection for efficient face recognition. Procedia Comput Sci 152:74–83. https://doi.org/10.1016/j.procs.2019.05.029

    Article  Google Scholar 

  19. Brandoni D, Simoncini V (2020) Tensor-train decomposition for image recognition. Calcolo 57:9. https://doi.org/10.1007/s10092-020-0358-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Thanh TNT, Trong KN (2018) An efficient face detection and recognition. Int J Innov Technol Explore Eng, vol 7

  21. Ojala T, Pietikäinen M, Mäenpää T (2001) A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. In: International conference on advances in pattern recognition. Springer, Berlin, Heidelberg, pp 399–408

  22. Choi JY, Plataniotis KN, Ro YM (2010) Using colour local binary pattern features for face recognition. In: 2010 IEEE international conference on image processing. IEEE, pp 4541–4544

  23. Zhou N, Constantinides AG, Huang G, Zhang S (2018) Face recognition based on an improved center symmetric local binary pattern. Neural Comput Appl 30:3791–3797. https://doi.org/10.1007/s00521-017-2963-2

    Article  Google Scholar 

  24. Jeena Jacob I, Srinivasagan KG, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recognit Lett 42:72–78. https://doi.org/10.1016/j.patrec.2014.01.017

    Article  Google Scholar 

  25. Lan R, Zhou Y, Tang YY (2016) Quaternionic local ranking binary pattern: a local descriptor of color images. IEEE Trans Image Process 25:566–579. https://doi.org/10.1109/TIP.2015.2507404

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng Q, Hao Q, Sbert M et al (2019) Local parallel cross pattern: a color texture descriptor for image retrieval. Sensors 19:315. https://doi.org/10.3390/s19020315

    Article  Google Scholar 

  27. Kanan HR, Faez K, Gao Y (2008) Face recognition using adaptively weighted patch PZM array from a single exemplar image per person. Pattern Recognit 41:3799–3812. https://doi.org/10.1016/j.patcog.2008.05.024

    Article  MATH  Google Scholar 

  28. Kanan HR, Faez K (2008) GA-based optimal selection of PZMI features for face recognition. Appl Math Comput 205:706–715. https://doi.org/10.1016/j.amc.2008.05.114

    Article  MATH  Google Scholar 

  29. Lajevardi SM, Hussain ZM (2010) Higher order orthogonal moments for invariant facial expression recognition. Digit Signal Process 20:1771–1779. https://doi.org/10.1016/j.dsp.2010.03.004

    Article  Google Scholar 

  30. Chen YM, Chiang J-H (2010) Face recognition using combined multiple feature extraction based on Fourier–Mellin approach for single example image per person. Pattern Recognit Lett 31:1833–1841. https://doi.org/10.1016/j.patrec.2010.03.018

    Article  Google Scholar 

  31. Singh C, Walia E, Mittal N (2011) Rotation invariant complex Zernike moments features and their applications to human face and character recognition. IET Comput Vis 5:255. https://doi.org/10.1049/iet-cvi.2010.0020

    Article  Google Scholar 

  32. Rani JS, Devaraj D (2012) Face recognition using Krawtchouk moment. Sadhana 37:441–460. https://doi.org/10.1007/s12046-012-0090-4

    Article  MathSciNet  MATH  Google Scholar 

  33. Dasari SD, Dasari S (2012) Face recognition using Tchebichef moments. Int J Inf Netw Secur 1:243

    Google Scholar 

  34. Farokhi S, Shamsuddin SM, Flusser J et al (2013) Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis. J Electron Imaging 22:013030. https://doi.org/10.1117/1.JEI.22.1.013030

    Article  Google Scholar 

  35. Farokhi S, Sheikh UU, Flusser J, Yang B (2015) Near infrared face recognition using Zernike moments and Hermite kernels. Inf Sci (NY) 316:234–245. https://doi.org/10.1016/j.ins.2015.04.030

    Article  Google Scholar 

  36. Mahbubur Rahman SM, Lata SP, Howlader T (2015) Bayesian face recognition using 2D Gaussian–Hermite moments. Eurasip J Image Video Process. https://doi.org/10.1186/s13640-015-0090-5

    Article  Google Scholar 

  37. Rahman SMM, Howlader T, Hatzinakos D (2016) On the selection of 2D Krawtchouk moments for face recognition. Pattern Recognit 54:83–93. https://doi.org/10.1016/j.patcog.2016.01.003

    Article  Google Scholar 

  38. Fathi A, Alirezazadeh P, Abdali-Mohammadi F (2016) A new Global–Gabor–Zernike feature descriptor and its application to face recognition. J Vis Commun Image Represent 38:65–72. https://doi.org/10.1016/j.jvcir.2016.02.010

    Article  Google Scholar 

  39. Hosny KM, Abd Elaziz M (2019) Face recognition using exact Gaussian-Hermit moments. In: Recent advances in computer vision. Springer, Cham, pp 169–187

    Chapter  Google Scholar 

  40. Hu H, Zhang Y, Shao C, Ju Q (2014) Orthogonal moments based on exponent functions: exponent-Fourier moments. Pattern Recognit 47:2596–2606

    Article  Google Scholar 

  41. Yang H, Liang L, Li Y, Wang X (2016) Quaternion exponent moments and their invariants for color image. Fundam Inform 145:189–205

    Article  MathSciNet  Google Scholar 

  42. Xiao B, Li L, Li Y et al (2017) Image analysis by fractional-order orthogonal moments. Inf Sci (NY) 382–383:135–149. https://doi.org/10.1016/j.ins.2016.12.011

    Article  MATH  Google Scholar 

  43. Benouini R, Batioua I, Zenkouar K et al (2019) Fractional-order orthogonal Chebyshev moments and moment invariants for image representation and pattern recognition. Pattern Recognit 86:332–343. https://doi.org/10.1016/j.patcog.2018.10.001

    Article  Google Scholar 

  44. Chen B, Yu M, Su Q et al (2018) Fractional quaternion Zernike moments for robust color image copy-move forgery detection. IEEE Access 6:56637–56646. https://doi.org/10.1109/ACCESS.2018.2871952

    Article  Google Scholar 

  45. Kaur P, Pannu HS, Malhi AK (2019) Plant disease recognition using fractional-order Zernike moments and SVM classifier. Neural Comput Appl 31:8749–8768. https://doi.org/10.1007/s00521-018-3939-6

    Article  Google Scholar 

  46. Xiao B, Luo J, Bi X et al (2020) Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking. Inf Sci (NY) 516:545–559. https://doi.org/10.1016/j.ins.2019.12.044

    Article  MathSciNet  MATH  Google Scholar 

  47. Hosny KM, Darwish MM (2019) New set of multi-channel orthogonal moments for color image representation and recognition. Pattern Recognit 88:153–173

    Article  Google Scholar 

  48. Wang X, Li W, Yang H et al (2015) Quaternion polar complex exponential transform for invariant color image description. Appl Math Comput 256:951–967

    MathSciNet  MATH  Google Scholar 

  49. Suk T, Flusser J (2009) Affine moment invariants of color images. In: Proceedings of CAIP 2009, LNCS5702. pp 334–341

  50. Hosny KM, Darwish MM (2019) A kernel-based method for fast and accurate computation of PHT in polar coordinates. J Real Time Image Process 16:1235–1247

    Article  Google Scholar 

  51. Hosny KM, Darwish MM (2017) Highly accurate and numerically stable higher order QPCET moments for color image representation. Pattern Recognit Lett 97:29–36

    Article  Google Scholar 

  52. Hosny KM, Darwish MM (2018) New set of quaternion moments for color images representation and recognition. J Math Imaging Vis 60:717–736

    Article  MathSciNet  Google Scholar 

  53. Upneja R, Pawlak M, Sahan AM (2018) An accurate approach for the computation of polar harmonic transforms. Optik (Stuttg) 158:623–633. https://doi.org/10.1016/j.ijleo.2017.12.058

    Article  Google Scholar 

  54. Databases LSFI (2014) Face 94 image database. Accessed 8

  55. Pan J-S, Wang X, Feng Q, Chu S-C (2020) A kernel-based probabilistic collaborative representation for face recognition. IEEE Access 8:37946–37957. https://doi.org/10.1109/ACCESS.2020.2975622

    Article  Google Scholar 

  56. Muqeet MA, Holambe RS (2019) Local binary patterns based on directional wavelet transform for expression and pose-invariant face recognition. Appl Comput Informatics 15:163–171. https://doi.org/10.1016/j.aci.2017.11.002

    Article  Google Scholar 

  57. Zeng S, Zhang B, Lan Y, Gou J (2019) Robust collaborative representation-based classification via regularization of truncated total least squares. Neural Comput Appl 31:5689–5697. https://doi.org/10.1007/s00521-018-3403-7

    Article  Google Scholar 

  58. Fan Z, Ni M, Zhu Q, Liu E (2015) Weighted sparse representation for face recognition. Neurocomputing 151:304–309. https://doi.org/10.1016/j.neucom.2014.09.035

    Article  Google Scholar 

  59. Song X, Feng Z-H, Hu G et al (2018) Dictionary integration using 3D morphable face models for pose-invariant collaborative-representation-based classification. IEEE Trans Inf Forensics Secur 13:2734–2745. https://doi.org/10.1109/TIFS.2018.2833052

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Nabil Neggaz for providing them with some materials.

Funding

The authors receive no funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid M. Hosny.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosny, K.M., Abd Elaziz, M. & Darwish, M.M. Color face recognition using novel fractional-order multi-channel exponent moments. Neural Comput & Applic 33, 5419–5435 (2021). https://doi.org/10.1007/s00521-020-05280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05280-0

Keywords

Profiles

  1. Khalid M. Hosny
  2. Mohamed M. Darwish