Skip to main content
Log in

Memristive self-learning logic circuit with application to encoder and decoder

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Different logic circuits based on memristors have been extensively investigated. However, most of these circuits require accurate initialization. A self-learning logic circuit based on mermristors that can achieve various logic gates without initialization is proposed in this paper. Three functional blocks, including a sum block, a learning block, and a compare block, are elaborately designed in the proposed logic circuit. Programmable switches in the sum and compare blocks enable the circuit to perform various logic gates, such as Boolean, IMPLY, and random logical combinations. In these various logical operations, the learning block can automatically obtain different memristance states. The aforementioned logic operations can easily be extended to multi-fan-in logic and logical cascade operations. Circuit designs of an encoder and decoder are considered as application examples. Finally, PSpice simulation results of the logic circuits and extended applications are provided. Simulation results indicate that the proposed circuit can effectively perform different logic operations and exhibits excellent robustness to circuit device variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Aljafar MJ, Perkowski MA, Acken JM, Tan R (2018) A time-efficient cmos-memristive programmable circuit realizing logic functions in generalized and-xor structures. IEEE Trans Very Large Scale Integr Syst 26:23–36

    Article  Google Scholar 

  2. Amirsoleimani A, Ahmadi M, Ahmadi A (2018) Logic design on mirrored memristive crossbars. IEEE Trans Circuits Syst Ii-Express Briefs 65:1688–1692

    Article  Google Scholar 

  3. Borghetti J, Li Z, Straznicky J, Li X, Ohlberg DA, Wu W, Stewart DR, Williams RS (2009) A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc Nat Acad Sci 106:1699–1703

    Article  Google Scholar 

  4. Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS (2010) Memristive switches enable stateful logic operations via material implication. Nature 464:873–876

    Article  Google Scholar 

  5. Chang YF, Zhou F, Fowler BW, Chen YC, Hsieh CC, Guckert L, Swartzlander EE, Lee JC (2017) Memcomputing (memristor + computing) in intrinsic siox-based resistive switching memory: arithmetic operations for logic applications. IEEE Trans Electron Dev 64:2977–2983

    Article  Google Scholar 

  6. Chen Q, Wang X, Wan H, Yang R (2017) A logic circuit design for perfecting memristor-based material implication. IEEE Trans Comput Aided Des Integr Circuits Syst 36:279–284

    Article  Google Scholar 

  7. Chowdhury A, Ayman A, Dey S, Sarker M, Arka AI (2018) Simulations of threshold logic unit problems using memristor based synapses and cmos neuron. In: International conference on electrical information and communication technology, pp 1–4

  8. Fan D, Sharad M, Roy K (2014) Design and synthesis of ultralow energy spin-memristor threshold logic. IEEE Trans Nanotechnol 13:574–583

    Article  Google Scholar 

  9. Gao L, Alibart F, Strukov DB (2013) Programmable cmos/memristor threshold logic. IEEE Trans Nanotechnol 12:115–119

    Article  Google Scholar 

  10. Guckert L, Swartzlander EE (2017) Mad gates-memristor logic design using driver circuitry. IEEE Trans Circuits Syst II Express Briefs 64:171–175

    Article  Google Scholar 

  11. Hu M, Li H, Chen Y, Wu Q, Rose GS, Linderman RW (2014) Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans Neural Netw Learn Syst 25:1864–1878

    Article  Google Scholar 

  12. James AP, Francis LRV, Kumar DS (2014) Resistive threshold logic. IEEE Trans Very Large Scale Integr VLSI Syst 22:190–195

    Article  Google Scholar 

  13. Karimi A, Rezai A (2019) High-performance digital logic implementation approach using novel memristor-based multiplexer. Int J Circuit Theory Appl 47:1933–1947

    Article  Google Scholar 

  14. Kim KM, Williams RS (2019) A family of stateful memristor gates for complete cascading logic. IEEE Trans Circuits Syst I Regul Pap 66:4348–4355

    Article  MathSciNet  Google Scholar 

  15. Klidbary SH, Shouraki SB, Afrakoti IEP (2019) An adaptive efficient memristive ink drop spread (ids) computing system. Neural Comput Appl 31:7733–7754

    Article  Google Scholar 

  16. Kvatinsky S, Belousov D, Liman S, Satat G, Wald N, Friedman EG, Kolodny A, Weiser UC (2014) Magic-memristor-aided logic. IEEE Trans Circuits Syst II Express Briefs 61:895–899

    Article  Google Scholar 

  17. Lehtonen E, Poikonen JH, Laiho M (2014) Memristive stateful logic. Memristor networks. Springer, Berlin, pp 603–623

    Google Scholar 

  18. Lehtonen E, Poikonen JH, Laiho M (2019) Memristive stateful logic. Handbook of memristor networks. Springer, Berlin, pp 1101–1121

    Book  Google Scholar 

  19. Lei X, Nguyen HAD, Taouil M, Hamdioui S, Bertels K (2018) A mapping methodology of Boolean logic circuits on memristor crossbar. IEEE Trans Comput Aided Des Integr Circuits Syst 37:311–323

    Article  Google Scholar 

  20. Liu G, Zheng L, Wang G, Shen Y, Liang Y (2019) A carry lookahead adder based on hybrid cmos-memristor logic circuit. IEEE Access 7:43691–43696

    Article  Google Scholar 

  21. Maan AK, Jayadevi DA, James AP (2017) A survey of memristive threshold logic circuits. IEEE Trans Neural Netw Learn Syst 28:1734–1746

    Article  MathSciNet  Google Scholar 

  22. Marranghello F, Callegaro V, Reis A, Ribas R (2019) Four-level forms for memristive material implication logic. IEEE Trans Very Large Scale Integr VLSI Syst 27:1228–1232

    Article  Google Scholar 

  23. Mirzaie N, Alzahmi A, Shamsi H, Byun GS (2018) Three-dimensional pipeline adc utilizing tsv/design optimization and memristor ratioed logic. IEEE Trans Very Large Scale Integr Syst 26:2619–2627

    Article  Google Scholar 

  24. Papandroulidakis G, Serb A, Khiat A, Merrett G, Prodromakis T (2019) Practical implementation of memristor-based threshold logic gates. IEEE Trans Circuits Syst I Regul Pap 66:3041–3051

    Article  Google Scholar 

  25. Papandroulidakis G, Vourkas I, Abusleme A, Sirakoulis GC, Rubio A (2017) Crossbar-based memristive logic-in-memory architecture. IEEE Trans Nanotechnol 16:491–501

    Article  Google Scholar 

  26. Papandroulidakis G, Vourkas I, Vasileiadis N, Sirakoulis GC (2014) Boolean logic operations and computing circuits based on memristors. IEEE Trans Circuits Syst II Express Briefs 61:972–976

    Article  Google Scholar 

  27. Pershin YV (2018) A demonstration of implication logic based on volatile (diffusive) memristors. IEEE Trans Circuits Syst II Express Briefs 66:1033–1037

    Article  Google Scholar 

  28. Rahman KC, Hammerstrom D, Li Y, Castagnaro H, Perkowski MA (2016) Methodology and design of a massively parallel memristive stateful imply logic-based reconfigurable architecture. IEEE Trans Nanotechnol 15:675–686

    Article  Google Scholar 

  29. Rohani SG, Taherinejad N, Radakovits D (2020) A semiparallel full-adder in imply logic. IEEE Trans Very Large Scale Integr Syst 28:297–301

    Article  Google Scholar 

  30. Rosezin R, Linn E, Nielen L, Kugeler C, Bruchhaus R, Waser R (2011) Integrated complementary resistive switches for passive high-density nanocrossbar arrays. IEEE Electron Dev Lett 32:191–193

    Article  Google Scholar 

  31. Talati N, Gupta S, Mane P, Kvatinsky S (2016) Logic design within memristive memories using memristor-aided logic (magic). IEEE Trans Nanotechnol 15:635–650

    Article  Google Scholar 

  32. Vourkas I, Sirakoulis GC (2016) Emerging memristor-based logic circuit design approaches: A review. IEEE Circuits Syst Mag 16:15–30

    Article  Google Scholar 

  33. Wang HP, Lin CC, Wu CC, Chen YC, Wang CY (2018) On synthesizing memristor-based logic circuits with minimal operational pulses. IEEE Trans Very Large Scale Integr Syst 26(12):2842–2852

    Article  Google Scholar 

  34. Yakopcic C, Wang S, Wang W, Shin E, Boeckl J, Subramanyam G, Taha TM (2018) Filament formation in lithium niobate memristors supports neuromorphic programming capability. Neural Comput Appl 30:3773–3779

    Article  Google Scholar 

  35. Yang Y, Mathew J, Pontarelli S, Ottavi M, Pradhan DK (2016) Complementary resistive switch-based arithmetic logic implementations using material implication. IEEE Trans Nanotechnol 15:94–108

    Article  Google Scholar 

  36. Yi L, Zhou YX, Lei X, Ke L, Wang ZR, Duan N, Lei J, Long C, Chang TC, Chang KC (2016) Realization of functional complete stateful boolean logic in memristive crossbar. ACS Appl Mater Interfaces 8:34559

    Article  Google Scholar 

  37. Zhang Y, Wang X, Li Y, Friedman EG (2017) Memristive model for synaptic circuits. IEEE Trans Circuits Syst II Express Briefs 64:767–771

    Article  Google Scholar 

  38. Zhao J, Zhou Z, Wang H, Wang J, Hao W, Ren D, Guo R, Chen J, Liu B, Yan X (2019) A boolean or gate implemented with an optoelectronic switching memristor. Appl Phys Lett 115:153504

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities (No. 531118010418) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 19K022) and the National Nature Science Foundation of China (No. 61674054) and the Natural Science Foundation of Hunan Province of China (No. 2017JJ2049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingru Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Q., Shi, Z., Sun, J. et al. Memristive self-learning logic circuit with application to encoder and decoder. Neural Comput & Applic 33, 4901–4913 (2021). https://doi.org/10.1007/s00521-020-05281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05281-z

Keywords

Navigation