Skip to main content
Log in

Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Cluster analysis is an essential tool in data mining. Several clustering algorithms have been proposed and implemented, most of which are able to find good quality clustering results. However, the majority of the traditional clustering algorithms, such as the K-means, K-medoids, and Chameleon, still depend on being provided a priori with the number of clusters and may struggle to deal with problems where the number of clusters is unknown. This lack of vital information may impose some additional computational burdens or requirements on the relevant clustering algorithms. In real-world data clustering analysis problems, the number of clusters in data objects cannot easily be preidentified and so determining the optimal amount of clusters for a dataset of high density and dimensionality is quite a difficult task. Therefore, sophisticated automatic clustering techniques are indispensable because of their flexibility and effectiveness. This paper presents a systematic taxonomical overview and bibliometric analysis of the trends and progress in nature-inspired metaheuristic clustering approaches from the early attempts in the 1990s until today’s novel solutions. Finally, key issues with the formulation of metaheuristic algorithms as a clustering problem and major application areas are also covered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abbasi AA, Younis M (2007) A survey on clustering algorithms for wireless sensor networks. Comput Commun 30(14–15):2826–2841

    Google Scholar 

  2. Abdulwahab HA, Noraziah A, Alsewari AA, Salih SQ (2019) An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems. IEEE Access 7:142085–142096

    Google Scholar 

  3. Abraham A, Das S, Konar A (2007) Kernel based automatic clustering using modified particle swarm optimization algorithm. In: Proceedings of the 9th annual conference on genetic and evolutionary computation. ACM, pp 2–9

  4. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795

    Google Scholar 

  5. Abualigah LM, Khader AT, Al-Betar MA (2016) Multi-objectives-based text clustering technique using K-mean algorithm. In: 2016 7th international conference on computer science and information technology (CSIT). IEEE, pp 1–6

  6. Abualigah LM, Khader AT, Hanandeh ES (2018) A hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering. Intell Decis Technol 12(1):3–14

    Google Scholar 

  7. Abualigah LM, Khader AT, Al-Betar MA, Alomari OA (2017) Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst Appl 84:24–36

    Google Scholar 

  8. Abualigah LM, Khader AT, Al-Betar MA, Awadallah MA (2016) A krill herd algorithm for efficient text documents clustering. In: 2016 IEEE symposium on computer applications & industrial electronics (ISCAIE). IEEE, pp 67–72

  9. Abualigah LM, Khader AT, AlBetar MA, Hanandeh ES (2016) A new hybridization strategy for krill herd algorithm and harmony search algorithm applied to improve the data clustering. In: 1st EAI international conference on computer science and engineering. European Alliance for Innovation (EAI), p 54

  10. Abualigah LM, Khader AT, AlBetar MA, Hanandeh ES (2017) Unsupervised text feature selection technique based on particle swarm optimization algorithm for improving the text clustering. In: EAI international conference on computer science and engineering

  11. Abubaker A, Baharum A, Alrefaei M (2015) Automatic clustering using multi-objective particle swarm and simulated annealing. PLoS One 10(7):e0130995

    Google Scholar 

  12. Agarwal P, Mehta S (2016) Enhanced flower pollination algorithm on data clustering. Int J Comput Appl 38(2–3):144–155

    Google Scholar 

  13. Agarwal P, Alam MA, Biswas R (2011) Issues, challenges and tools of clustering algorithms. arXiv preprint arXiv:1110.2610

  14. Agbaje MB, Ezugwu AE, Els R (2019) Automatic data clustering using hybrid firefly particle swarm optimization algorithm. IEEE Access 7:184963–184984

    Google Scholar 

  15. Aggarwal CC (ed) (2014) Data classification: algorithms and applications. CRC Press, Boca Raton

    Google Scholar 

  16. Agusti LE, Salcedo-Sanz S, Jiménez-Fernández S, Carro-Calvo L, Del Ser J, Portilla-Figueras JA (2012) A new grouping genetic algorithm for clustering problems. Expert Syst Appl 39(10):9695–9703

    Google Scholar 

  17. Akinyelu AA, Ezugwu AE (2019) Nature inspired instance selection techniques for support vector machine speed optimization. IEEE Access 7:154581–154599

    Google Scholar 

  18. Akinyelu AA, Ezugwu AE, Adewumi AO (2019) Ant colony optimization edge selection for support vector machine speed optimization. Neural Comput Appl 32:1–33

    Google Scholar 

  19. Akyol S, Alatas B (2017) Plant intelligence based metaheuristic optimization algorithms. Artif Intell Rev 47(4):417–462

    Google Scholar 

  20. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38(10):13170–13180

    Google Scholar 

  21. Aliniya Z, Mirroshandel SA (2019) A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm. Expert Syst Appl 117:243–266

    Google Scholar 

  22. Alswaitti M, Albughdadi M, Isa NAM (2018) Density-based particle swarm optimization algorithm for data clustering. Expert Syst Appl 91:170–186

    Google Scholar 

  23. Anand N, Vikram P (2015) Comprehensive analysis & performance comparison of clustering algorithms for big data. Rev Comput Eng Res 4:54–80

    Google Scholar 

  24. Anari B, Torkestani JA, Rahmani AM (2017) Automatic data clustering using continuous action-set learning automata and its application in segmentation of images. Appl Soft Comput 51:253–265

    Google Scholar 

  25. Arbelaitz O, Gurrutxaga I, Muguerza J, PéRez JM, Perona I (2013) An extensive comparative study of cluster validity indices. Pattern Recognit 46(1):243–256

    Google Scholar 

  26. Atabay HA, Sheikhzadeh MJ, Torshizi M (2016) A clustering algorithm based on integration of K-means and PSO. In: 2016 1st conference on swarm intelligence and evolutionary computation (CSIEC). IEEE, pp 59–63

  27. Baker FB, Hubert LJ (1975) Measuring the power of hierarchical cluster analysis. J Am Stat Assoc 70(1975):31–38

    MATH  Google Scholar 

  28. Banati H, Bajaj M (2013) Performance analysis of firefly algorithm for data clustering. Int J Swarm Intell 1(1):19–35

    Google Scholar 

  29. Bandyopadhyay S, Saha S (2008) A point symmetry-based clustering technique for automatic evolution of clusters. IEEE Trans Knowl Data Eng 20(2008):1441–1457

    Google Scholar 

  30. Berkhin P (2006) A survey of clustering data mining techniques. In: Kogan J, Nicholas C, Teboulle M (eds) Grouping multidimensional data. Springer, Berlin, pp 25–71

    Google Scholar 

  31. Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cyber Part B 28(3):301–315

    Google Scholar 

  32. Bezdek JC (2013) Pattern recognition with fuzzy objective function algorithms. Springer, Berlin

    MATH  Google Scholar 

  33. Blanco-Mesa F, León-Castro E, Merigó JM (2019) A bibliometric analysis of aggregation operators. Appl Soft Comput 81:105488

    Google Scholar 

  34. Blanco-Mesa F, Merigó JM, Gil-Lafuente AM (2017) Fuzzy decision making: a bibliometric-based review. J Intell Fuzzy Syst 32(3):2033–2050

    Google Scholar 

  35. Boryczka U (2009) Finding groups in data: cluster analysis with ants. Appl Soft Comput 9(1):61–70

    Google Scholar 

  36. Bouyer A, Ghafarzadeh H, Tarkhaneh O (2015) An efficient hybrid algorithm using cuckoo search and differential evolution for data clustering. Indian J Sci Technol 8(24):1–12

    Google Scholar 

  37. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1974):1–27

    MathSciNet  MATH  Google Scholar 

  38. Chang DX, Zhang XD, Zheng CW, Zhang DM (2010) A robust dynamic niching genetic algorithm with niche migration for automatic clustering problem. Pattern Recognit 43(4):1346–1360

    MATH  Google Scholar 

  39. Chang H, Yeung DY (2008) Robust path-based spectral clustering. Pattern Recognit 41(1):191–203

    MATH  Google Scholar 

  40. Chou CH, Su MC, Lai E (2004) A new cluster validity measure and its application to image compression. Pattern Anal Appl 7(2):205–220

    MathSciNet  Google Scholar 

  41. Chowdhury A, Bose S, Das S (2011) Automatic clustering based on invasive weed optimization algorithm. In: International conference on swarm, evolutionary, and memetic computing. Springer, Berlin, Heidelberg, pp 105–112

  42. Chu Y, Mi H, Liao H, Ji Z, Wu QH (2008) A fast bacterial swarming algorithm for high-dimensional function optimization. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, pp 3135–3140

  43. Chuang LY, Hsiao CJ, Yang CH (2011) Chaotic particle swarm optimization for data clustering. Expert Syst Appl 38(12):14555–14563

    Google Scholar 

  44. Condorcet MJAN (2014) “Essai sur l“Application de l“Analyse `a la Probabilite´ des decisions rendues a la Pluralite´ des Voix,” paris: L“Imprimerie Royale, 1785

  45. Corter, J. E. and Gluck, M. A. (1992). “Explaining basic categories: Feature predictability and information,” Psychological Bulletin, vol. 111, no. 2, pp 291–303, 1992

  46. Cowgill MC, Harvey RJ, Watson LT (1999) A genetic algorithm approach to cluster analysis. Comput Math Appl 37(7):99–108

    MathSciNet  MATH  Google Scholar 

  47. Cruz DPF, Maia RD, de Castro LN (2013) A new encoding scheme for a bee-inspired optimal data clustering algorithm. In: 2013 BRICS congress on computational intelligence and 11th Brazilian congress on computational intelligence. IEEE, pp 136–141

  48. Cura T (2012) A particle swarm optimization approach to clustering. Expert Syst Appl 39(1):1582–1588

    Google Scholar 

  49. Dalrymple-Alford EC (1970) The measurement of clustering in free recall. Psycol. Bull. 74:32–34

    Google Scholar 

  50. Das S, Abraham A, Konar A (2007) Automatic clustering using an improved differential evolution algorithm. IEEE Trans Syst Man Cybern Part A Syst Hum 38(1):218–237

    Google Scholar 

  51. Das S, Abraham A, Konar A (2008) Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognit Lett 29(5):688–699

    Google Scholar 

  52. Das S, Chowdhury A, Abraham A (2009) A bacterial evolutionary algorithm for automatic data clustering. In: 2009 IEEE congress on evolutionary computation. IEEE, pp 2403–2410

  53. Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution—an updated survey. Swarm Evol Comput 27:1–30

    Google Scholar 

  54. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Google Scholar 

  55. Dorigo M, Birattari M (2010) Ant colony optimization. Springer, Berlin, pp 36–39

    Google Scholar 

  56. Dorigo M, Stützle T (2019) Ant colony optimization: overview and recent advances. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. Springer, Cham, pp 311–351

    Google Scholar 

  57. Drewes B (2005) Some industrial applications of text mining. In: Knowledge mining. StudFuzz, vol 185. Springer, Berlin, Heidelberg, pp 233–238

    Google Scholar 

  58. Duan G, Hu W, Zhang Z (2016) A novel data clustering algorithm based on modified adaptive particle swarm optimization. Int J Signal Process Image Process Pattern Recognit 9(3):179–188

    Google Scholar 

  59. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  60. Dunn JC (1973) A Fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cyber 3(1973):32–57

    MathSciNet  MATH  Google Scholar 

  61. Dutt A, Ismail MA, Herawan T (2017) A systematic review on educational data mining. IEEE Access 5:15991–16005

    Google Scholar 

  62. Dutta D, Dutta P, Sil J (2012) Data clustering with mixed features by multi objective genetic algorithm. In: 2012 12th international conference on hybrid intelligent systems (HIS). IEEE, pp 336–341

  63. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  64. Elaziz MA, Nabil NEGGAZ, Ewees AA, Lu S (2019) Automatic data clustering based on hybrid atom search optimization and sine–cosine algorithm. In: 2019 IEEE congress on evolutionary computation (CEC). IEEE, pp 2315–2322

  65. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol 96, No. 34, pp 226–231

  66. Ezenkwu CP, Ozuomba S, Kalu C (2015) Application of K-means algorithm for efficient customer segmentation: a strategy for targeted customer services. Int J Adv Res Artif Intell (IJARAI) 4(10):40–44

    Google Scholar 

  67. Ezugwu AE (2019) Enhanced symbiotic organisms search algorithm for unrelated parallel machines manufacturing scheduling with setup times. Knowl-Based Syst 172:15–32

    Google Scholar 

  68. Ezugwu AES, Adewumi AO (2017) Discrete symbiotic organisms search algorithm for travelling salesman problem. Expert Syst Appl 87:70–78

    Google Scholar 

  69. Ezugwu AE, Adewumi AO (2017) Soft sets based symbiotic organisms search algorithm for resource discovery in cloud computing environment. Future Gener Comput Syst 76:33–50

    Google Scholar 

  70. Ezugwu AE, Akutsah F (2018) An improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times. IEEE Access 6:54459–54478

    Google Scholar 

  71. Ezugwu AE, Prayogo D (2019) Symbiotic organisms search algorithm: theory, recent advances and applications. Expert Syst Appl 119:184–209

    Google Scholar 

  72. Ezugwu AE, Adeleke OJ, Viriri S (2018) Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times. PLoS One 13(7):e0200030

    Google Scholar 

  73. Ezugwu AE, Adeleke OJ, Akinyelu AA, Viriri S (2019) A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems. Neural Comput Appl 32:1–45

    Google Scholar 

  74. Ezugwu AE, Akutsah F, Olusanya MO, Adewumi AO (2018) Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem. PLoS One 13(3):e0193751

    Google Scholar 

  75. Ezugwu AE (2020) Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study. SN Appl Sci 2(2):273

    Google Scholar 

  76. Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya AY, Foufou S, Bouras A (2014) A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Top Comput 2(3):267–279

    Google Scholar 

  77. Falkenauer E (1998) Genetic algorithms and grouping problems. Wiley, Chichester

    MATH  Google Scholar 

  78. Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2(2):139–172. https://doi.org/10.1007/BF00114265

    Article  Google Scholar 

  79. Fister I, Fister I Jr, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Google Scholar 

  80. Fortier JJ, Solomon H (1966) Clustering procedures. In: Krishnaiah PR (ed) Multivariate analysis, vol 62. Academic Press, New York

    Google Scholar 

  81. Fowlkes EB, Mallows CL (1983) A method for comparing two hierarchical clusterings. J Am Stat Assoc 78(383):553–569

    MATH  Google Scholar 

  82. Gan G, Ma C, Wu J (2007) Data clustering: theory, algorithms, and applications, vol 20. SIAM, Philadelphia

    MATH  Google Scholar 

  83. Gluck MA, Corter JE (1985) Information, uncertainty, and the utility of categories. In: Program of the 7th annual conference of the cognitive science society, pp 283–287

  84. Goel S, Sharma A, Bedi P (2011) Cuckoo search clustering algorithm: a novel strategy of biomimicry. In: 2011 world congress on information and communication technologies. IEEE, pp 916–921

  85. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Google Scholar 

  86. Guha S, Rastogi R, Shim K (2001) Cure: an efficient clustering algorithm for large databases. Inf Syst 26(1):35–58

    MATH  Google Scholar 

  87. Guo D, Chen J, Chen Y, Li Z (2018) LBIRCH: an improved BIRCH algorithm based on link. ICMLC 2018:74–79

    Google Scholar 

  88. Halkidi M, Vazirgiannis M (2001) Clustering validity assessment: finding the optimal partitioning of a data set. In: Proceedings 2001 IEEE international conference on data mining. IEEE, pp 187–194

  89. Halkidi M, Batistakis Y, Vazirgiannis M (2002) Clustering validity checking methods: part II. ACM Sigmod Rec 31(3):19–27

    MATH  Google Scholar 

  90. Halkidi M, Vazirgiannis M, Batistakis I (2000) Quality scheme assessment in the clustering process. In: Proceedings of PKDD, Lyon, France

  91. Hameed PN, Verspoor K, Kusljic S, Halgamuge S (2018) A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration. BMC Bioinform 19:29

    Google Scholar 

  92. Hamerly G, Elkan C (2004) Learning the k in k-means. In: Advances in neural information processing systems. MIT Cambridge Press, 2003, pp 281–288

  93. Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton, p 159

    Google Scholar 

  94. Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-means clustering algorithm. J R Stat Soc Ser C (Appl Stat) 28(1):100–108

    MATH  Google Scholar 

  95. Hassanzadeh T, Meybodi MR (2012) A new hybrid approach for data clustering using firefly algorithm and K-means. In: The 16th CSI international symposium on artificial intelligence and signal processing (AISP 2012). IEEE, pp 007–011

  96. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    MathSciNet  Google Scholar 

  97. He H, Tan Y (2012) A two-stage genetic algorithm for automatic clustering. Neurocomputing 81:49–59

    Google Scholar 

  98. He Q, Jin X, Du C, Zhuang F, Shi Z (2014) Clustering in extreme learning machine feature space. Neurocomputing 128:88–95

    Google Scholar 

  99. Hoos HH, Stützle T (2004) Stochastic local search: foundations and applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  100. Hosseinimotlagh S, Papalexakis EE (2018) Unsupervised content-based identification of fake news articles with tensor decomposition ensembles. In: Proceedings of the workshop on misinformation and misbehavior mining on the web (MIS2)

  101. Hruschka ER, Campello RJ, Freitas AA (2009) A survey of evolutionary algorithms for clustering. IEEE Trans Syst Man Cybern Part C (Appl Rev) 39(2):133–155

    Google Scholar 

  102. Huang CL, Huang WC, Chang HY, Yeh YC, Tsai CY (2013) Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering. Appl Soft Comput 13(9):3864–3872

    Google Scholar 

  103. Hussain K, Salleh MNM, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52(4):2191–2233

    Google Scholar 

  104. Jaccard P (1901) Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles 37:241–272

    Google Scholar 

  105. Jafar OM, Sivakumar R (2010) Ant-based clustering algorithms: a brief survey. Int J Comput Theory Eng 2(5):787

    Google Scholar 

  106. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):651–666

    Google Scholar 

  107. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323

    Google Scholar 

  108. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Google Scholar 

  109. Janmaijaya M, Shukla AK, Abraham A, Muhuri PK (2018) A scientometric study of neurocomputing publications (1992–2018): an aerial overview of intrinsic structure. Publications 6(3):32

    Google Scholar 

  110. Jensi R, Jiji GW (2015) MBA-LF: a new data clustering method using modified BAT algorithm and levy flight. ICTACT J Soft Comput 6(1):1093–1101

    Google Scholar 

  111. José-García A, Gómez-Flores W (2016) Automatic clustering using nature-inspired metaheuristics: a survey. Appl Soft Comput 41:192–213

    Google Scholar 

  112. Kansal T, Bahuguna S, Singh V, Choudhury T (2018) Customer segmentation using K-means clustering. In: 2018 international conference on computational techniques, electronics and mechanical systems (CTEMS)

  113. Kao Y, Chen CC (2014) Automatic clustering for generalised cell formation using a hybrid particle swarm optimisation. Int J Prod Res 52(12):3466–3484

    Google Scholar 

  114. Kapoor S, Zeya I, Singhal C, Nanda SJ (2017) A grey wolf optimizer based automatic clustering algorithm for satellite image segmentation. Proc Comput Sci 115:415–422

    Google Scholar 

  115. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, vol 200. Technical report-tr06. Erciyes Universityersity, Engineering Faculty, Computer Engineering Department, pp 1–10

  116. Karaboğa D, Ökdem S (2004) A simple and global optimization algorithm for engineering problems: differential evolution algorithm. Turk J Electr Eng Comput Sci 12(1):53–60

    Google Scholar 

  117. Karaboga D, Ozturk C (2011) A novel clustering approach: artificial bee colony (ABC) algorithm. Appl Soft Comput 11(1):652–657

    Google Scholar 

  118. Karthikeyan M, Aruna P (2013) Probability based document clustering and image clustering using content-based image retrieval. Appl Soft Comput 13(2):959–966

    Google Scholar 

  119. Karypis G, Han EH, Chameleon VK (1999) A hierarchical clustering algorithm using dynamic modeling. IEEE Comput 32(8):68–75

    Google Scholar 

  120. Kaushik K, Arora V (2015) A hybrid data clustering using firefly algorithm based improved genetic algorithm. Proc Comput Sci 58:249–256

    Google Scholar 

  121. Kosters WA, Laros JF (2007) Metrics for mining multisets. In: International conference on innovative techniques and applications of artificial intelligence. Springer, London, pp 293–303

  122. Kotsiantis S, Pintelas EP (2004) Recent advances in clustering: a brief survey. WSEAS Trans Inf Sci Appl 1:73–81

    Google Scholar 

  123. Kovács F, Ivancsy R (2006) Cluster validity measurement for arbitrary shaped clustering. In: Proceeding of the 5th. WSEAS international conference on artificial, knowledge engineering and data bases, Madrid, Spain, February 15–17, 2006, pp 372–377

  124. Kumar V, Chhabra JK, Kumar D (2014) Automatic cluster evolution using gravitational search algorithm and its application on image segmentation. Eng Appl Artif Intell 29:93–103

    Google Scholar 

  125. Kumar V, Chhabra JK, Kumar D (2016) Automatic data clustering using parameter adaptive harmony search algorithm and its application to image segmentation. J Intell Syst 25(4):595–610

    Google Scholar 

  126. Kumar Y, Sahoo G (2014) A review on gravitational search algorithm and its applications to data clustering & classification. Int J Intell Syst Appl 6(6):79

    Google Scholar 

  127. Kundu D, Suresh K, Ghosh S, Das S, Abraham A, Badr Y (2009) Automatic clustering using a synergy of genetic algorithm and multi-objective differential evolution. In: International conference on hybrid artificial intelligence systems. Springer, Berlin, Heidelberg, pp 177–186

  128. Kuo RJ, Zulvia FE (2018) Automatic clustering using an improved artificial bee colony optimization for customer segmentation. Knowl Inf Syst 57(2):331–357

    Google Scholar 

  129. Kuo RJ, Huang YD, Lin CC, Wu YH, Zulvia FE (2014) Automatic kernel clustering with bee colony optimization algorithm. Inf Sci 283:107–122

    Google Scholar 

  130. Kuo RJ, Syu YJ, Chen ZY, Tien FC (2012) Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Inf Sci 195:124–140

    Google Scholar 

  131. Kuo R, Zulvia F (2013) Automatic clustering using an improved particle swarm optimization. J Ind Intell Inf 1(1):46–51

    Google Scholar 

  132. Kużelewska U (2014) Clustering algorithms in hybrid recommender system on MovieLens data. Stud Log Gramm Rhetor 37(50):125–139

    Google Scholar 

  133. Lago-Fernández LF, Corbacho F (2010) Normality-based validation for crisp clustering. Pattern Recognit 43(3):782–795

    MATH  Google Scholar 

  134. Landers JR, Duperrouzel B (2018) Machine learning approaches to competing in fantasy leagues for the NFL. IEEE Trans Games 11(2):159–172

    Google Scholar 

  135. Lashkari M, Moattar MH (2015) The improved K-means clustering algorithm using the proposed extended PSO algorithm. In: 2015 international congress on technology, communication and knowledge (ICTCK). IEEE, pp 429–434

  136. Lee WP, Chen SW (2010) Automatic clustering with differential evolution using cluster number oscillation method. In: 2010 2nd international workshop on intelligent systems and applications. IEEE, pp 1–4

  137. Legány C, Juhász S, Babos A (2006) Cluster validity measurement techniques. In: Proceeding of the 5th. WSEAS international conference on artificial, knowledge engineering and data bases, Madrid, Spain, February 15–17, 2006, pp 388–393

  138. Ling HL, Wu JS, Zhou Y, Zheng WS (2016) How many clusters? A robust PSO-based local density model. Neurocomputing 207:264–275

    Google Scholar 

  139. Liu R, Wang X, Li Y, Zhang X (2012) Multi-objective invasive weed optimization algortihm for clustering. In: 2012 IEEE congress on evolutionary computation. IEEE, pp 1–8

  140. Liu R, Zhu B, Bian R, Ma Y, Jiao L (2015) Dynamic local search based immune automatic clustering algorithm and its applications. Appl Soft Comput 27:250–268

    Google Scholar 

  141. Liu T, Rosenberg C, Rowley HA (2007) Clustering billions of images with large scale nearest neighbor search. In: 2007 IEEE workshop on applications of computer vision (WACV’07). IEEE, p 28

  142. Liu X, Fu H (2010) An effective clustering algorithm with ant colony. JCP 5(4):598–605

    Google Scholar 

  143. Liu Y, Wu X, Shen Y (2011) Automatic clustering using genetic algorithms. Appl Math Comput 218(4):1267–1279

    MathSciNet  MATH  Google Scholar 

  144. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, No. 14, pp 281–297

  145. Majhi SK, Biswal S (2018) Optimal cluster analysis using hybrid K-means and ant lion optimizer. Karbala Int J Mod Sci 4(4):347–360

    Google Scholar 

  146. Malhat MG, Mousa HM, El-Sisi AB (2014) Clustering of chemical data sets for drug discovery. In: 2014 9th international conference on informatics and systems

  147. Marinakis Y, Marinaki M, Matsatsinis N (2009) A hybrid discrete artificial bee colony-GRASP algorithm for clustering. In: 2009 international conference on computers & industrial engineering. IEEE, pp 548–553

  148. Masoud H, Jalili S, Hasheminejad SMH (2013) Dynamic clustering using combinatorial particle swarm optimization. Appl Intell 38(3):289–314

    Google Scholar 

  149. Maulik U, Saha I (2009) Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery. Pattern Recognit 42(9):2135–2149

    MATH  Google Scholar 

  150. Maulik U, Saha I (2010) Automatic fuzzy clustering using modified differential evolution for image classification. IEEE Trans Geosci Remote Sens 48(9):3503–3510

    Google Scholar 

  151. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366

    Google Scholar 

  152. Merigó JM, Cobo MJ, Laengle S, Rivas D, Herrera-Viedma E (2019) Twenty years of soft computing: a bibliometric overview. Soft Comput 23(5):1477–1497

    Google Scholar 

  153. Milligan GW, Cooper MC (1987) Methodology review: clustering methods. Appl Psychol Meas 11(4):329–354

    Google Scholar 

  154. Mohammadpour T, Bidgoli AM, Enayatifar R, Javadi HH (2019) Efficient clustering in collaborative filtering recommender system: hybrid method based on genetic algorithm and gravitational emulation local search algorithm. Genomics 111(6):1902–1912

    Google Scholar 

  155. Molina D, Poyatos J, Del Ser J, García S, Hussain A, Herrera F (2020) Comprehensive taxonomies of nature-and bio-inspired optimization: inspiration versus algorithmic behavior, critical analysis and recommendations. arXiv preprint arXiv:2002.08136

  156. Mouton JP, Ferreira M, Helberg SJA (2020) A comparison of clustering algorithms for automatic modulation classification. Expert Syst Appl 151:113317

    Google Scholar 

  157. Muhuri PK, Shukla AK, Abraham A (2019) Industry 4.0: a bibliometric analysis and detailed overview. Eng Appl Artif Intell 78:218–235

    Google Scholar 

  158. Muhuri PK, Shukla AK, Janmaijaya M, Basu A (2018) Applied soft computing: a bibliometric analysis of the publications and citations during (2004–2016). Appl Soft Comput 69:381–392

    Google Scholar 

  159. Murty MR, Naik A, Murthy JVR, Reddy PP, Satapathy SC, Parvathi K (2014) Automatic clustering using teaching learning based optimization. Appl Math 5(08):1202

    Google Scholar 

  160. Nanda SJ, Panda G (2013) Automatic clustering algorithm based on multi-objective immunized PSO to classify actions of 3D human models. Eng Appl Artif Intell 26(5–6):1429–1441

    Google Scholar 

  161. Nayak J, Kanungo DP, Naik B, Behera HS (2016) Evolutionary improved swarm-based hybrid K-means algorithm for cluster analysis. In: Proceedings of the second international conference on computer and communication technologies. Springer, New Delhi, pp 343–352

  162. Nayak J, Nanda M, Nayak K, Naik B, Behera HS (2014) An improved firefly fuzzy c-means (FAFCM) algorithm for clustering real world data sets. In: Advanced computing, networking and informatics, vol 1. Springer, Cham, pp 339–348

  163. Nayyar A, Puri V (2017) Comprehensive analysis & performance comparison of clustering algorithms for big data. Rev Comput Eng Res 4(2):54–80

    Google Scholar 

  164. Nerurkar P, Shirke A, Chandane M, Bhirud S (2018) Empirical analysis of data clustering algorithms. Proc Comput Sci 125:770–779

    Google Scholar 

  165. Niknam T, Olamaie J, Amiri B (2008) A hybrid evolutionary algorithm based on ACO and SA for cluster analysis. J Appl Sci 8(15):2695–2702

    Google Scholar 

  166. Niu B, Wang H (2012) Bacterial colony optimization. Discrete Dyn Nat Soc 2012:698057. https://doi.org/10.1155/2012/698057

    Article  MathSciNet  MATH  Google Scholar 

  167. Omran MG, Salman A, Engelbrecht AP (2006) Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal Appl 8(4):332

    MathSciNet  Google Scholar 

  168. Ozturk C, Hancer E, Karaboga D (2015) Dynamic clustering with improved binary artificial bee colony algorithm. Appl Soft Comput 28:69–80

    Google Scholar 

  169. Pacheco TM, Gonçalves LB, Ströele V, Soares SSR (2018) An ant colony optimization for automatic data clustering problem. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

  170. Pal NR, Biswas J (1997) Cluster validation using graph theoretic concepts. Pattern Recognit 30(6):847–857

    Google Scholar 

  171. Paterlini S, Krink T (2006) Differential evolution and particle swarm optimisation in partitional clustering. Comput Stat Data Anal 50(5):1220–1247

    MathSciNet  MATH  Google Scholar 

  172. Pelleg D (2000) Extending K-means with efficient estimation of the number of clusters in ICML. In: Proceedings of the 17th international conference on machine learning, pp 277–281

  173. Peng H, Wang J, Shi P, Riscos-Núñez A, Pérez-Jiménez MJ (2015) An automatic clustering algorithm inspired by membrane computing. Pattern Recognit Lett 68:34–40

    Google Scholar 

  174. Raftery A (1986) A note on Bayes factors for log-linear contingency table models with vague prior information. J R Stat Soc 48(2):249–250

    MathSciNet  MATH  Google Scholar 

  175. Rahman MA, Islam MZ (2014) A hybrid clustering technique combining a novel genetic algorithm with K-means. Knowl-Based Syst 71:345–365

    Google Scholar 

  176. Rajah V, Ezugwu AE (2020) Hybrid symbiotic organism search algorithms for automatic data clustering. In: 2020 conference on information communications technology and society (ICTAS). IEEE, pp 1–9

  177. Rajpurohit J, Sharma TK, Abraham A, Vaishali A (2017) Glossary of metaheuristic algorithms. Int J Comput Inf Syst Ind Manag Appl 9:181–205

    Google Scholar 

  178. Ramadas M, Abraham A (2019) Metaheuristics for data clustering and image segmentation. Springer, Berlin

    MATH  Google Scholar 

  179. Rana S, Jasola S, Kumar R (2010) A hybrid sequential approach for data clustering using K-Means and particle swarm optimization algorithm. Int J Eng Sci Technol 2(6)

  180. Rana S, Jasola S, Kumar R (2013) A boundary restricted adaptive particle swarm optimization for data clustering. Int J Mach Learn Cybern 4(4):391–400

    Google Scholar 

  181. Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Google Scholar 

  182. Rani Y, Rohil H (2013) A study of hierarchical clustering algorithm. Int J Inf Comput Technol 3(10):1115–1122

    Google Scholar 

  183. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Google Scholar 

  184. Raposo C, Antunes CH, Barreto JP (2014) Automatic clustering using a genetic algorithm with new solution encoding and operators. In: International conference on computational science and its applications. Springer, Cham, pp 92–103

  185. Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Autom Electr Syst 27(4):419–440

    Google Scholar 

  186. Rendon LE, Garcia R, Abundez I, Gutierrez C et al (2002) Niva: a robust cluster validity. In: 2th. WSEAS international conference on scientific computation and soft computing, Crete, Greece, pp 209–213

  187. Rijsbergen V (1979) Information retrieval. Butterworths, London, p 1979

    Google Scholar 

  188. Rokach L (2005) “Clustering methods”, data mining and knowledge discovery handbook. Springer, Berlin, pp 331–352

    Google Scholar 

  189. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    MATH  Google Scholar 

  190. Sabau AS (2012) Survey of clustering based financial fraud detection research. Inform Econ 16(1):110

    MathSciNet  Google Scholar 

  191. Saemi B, Hosseinabadi AA, Kardgar M, Balas VE (2018) Nature inspired partitioning clustering algorithms: a review and analysis. In: Advances in intelligent systems and computing, pp 96–116

  192. Saha I, Maulik U, Bandyopadhyay S (2009) A new differential evolution based fuzzy clustering for automatic cluster evolution. In: 2009 IEEE international advance computing conference. IEEE, pp 706–711

  193. Sahoo AJ, Kumar Y (2014) Modified teacher learning based optimization method for data clustering. In: Advances in signal processing and intelligent recognition systems. Springer, Cham, pp 429–437

  194. Saitta S, Raphael B, Smith I (2007) Abounded index for cluster validity. In: Perner P (ed) Machine learning and data mining in pattern recognition, vol 4571. Lecture notes in computer science. Springer, Berlin, pp 174–187

    Google Scholar 

  195. Salcedo-Sanz S, Carro-Calvo L, Portilla-Figueras A, Cuadra L, Camacho D (2013) Fuzzy clustering with grouping genetic algorithms. In: International conference on intelligent data engineering and automated learning. Springer, Berlin, Heidelberg, pp 334–341

  196. Sarsoh JT, Hashim KM, Miften FS (2009) Comparisons between automatic and non-automatic clustering algorithms. J Coll Educ Pure Sci 4(1):221–227

    Google Scholar 

  197. Satapathy SC, Naik A (2011) Data clustering based on teaching-learning-based optimization. In: International conference on swarm, evolutionary, and memetic computing. Springer, Berlin, Heidelberg, pp 148–156

  198. Sathappan S, Sridhar S, Tomar DC (2017) A literature study on traditional clustering algorithms for uncertain data. J Adv Math Comput Sci 21:1–21

    Google Scholar 

  199. Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A et al (2017) A review of clustering techniques and developments. Neurocomputing 267:664–681

    Google Scholar 

  200. Senthilnath J, Das V, Omkar SN, Mani V (2013) Clustering using levy flight cuckoo search. In: Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012). Springer, India, pp 65–75

  201. Senthilnath J, Omkar SN, Mani V (2011) Clustering using firefly algorithm: performance study. Swarm Evol Comput 1(3):164–171

    Google Scholar 

  202. Sharma M, Chhabra JK (2019) Sustainable automatic data clustering using hybrid PSO algorithm with mutation. Sustain Comput Inform Syst 23:144–157

    Google Scholar 

  203. Sharma SC (1996) Applied multivariate techniques. Wiley, New York

    Google Scholar 

  204. Shehab M, Khader AT, Al-Betar MA (2017) A survey on applications and variants of the cuckoo search algorithm. Appl Soft Comput 61:1041–1059

    Google Scholar 

  205. Shirkhorshidi AS, Aghabozorgi S, Wah TY, Herawan T (2014) Big data clustering: a review. Lecture notes in computer science. Springer, Cham, pp 707–720

    Google Scholar 

  206. Shukla AK, Banshal SK, Seth T, Basu A, John R, Muhuri PK (2020) A bibliometric overview of the field of type-2 fuzzy sets and systems [discussion forum]. IEEE Comput Intell Mag 15(1):89–98

    Google Scholar 

  207. Shukla AK, Sharma R, Muhuri PK (2018) A review of the scopes and challenges of the modern real-time operating systems. Int J Embed Real-Time Commun Syst (IJERTCS) 9(1):66–82

    Google Scholar 

  208. Shukla N, Merigó JM, Lammers T, Miranda L (2020) Half a century of computer methods and programs in biomedicine: a bibliometric analysis from 1970 to 2017. Comput Methods Programs Biomed 183:105075

    Google Scholar 

  209. Silva Filho TM, Pimentel BA, Souza RM, Oliveira AL (2015) Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization. Expert Syst Appl 42(17–18):6315–6328

    Google Scholar 

  210. Singh J, Kumar R, Mishra AK (2015) Clustering algorithms for wireless sensor networks: a review. In: 2015 2nd international conference on computing for sustainable global development (INDIACom)

  211. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  212. Strehl A, Ghosh J (2000) Clustering guidance and quality evaluation using relationship-based visualization. In: Intelligent engineering systems through artificial neural networks, St. Louis, Missouri, USA, pp 483–488

  213. Sundararajan S, Karthikeyan S (2014) An efficient hybrid approach for data clustering using dynamic K-means algorithm and firefly algorithm. J Eng Appl Sci 9(8):1348–1353

    Google Scholar 

  214. Suresh K, Kundu D, Ghosh S, Das S, Abraham A (2009) Automatic clustering with multi-objective differential evolution algorithms. In 2009 IEEE congress on evolutionary computation. IEEE, pp 2590–2597

  215. Taghva K, Sharma M (2007) Comparison of automatic clustering and manual categorization of documents. In: Akhgar B (ed) ICCS

  216. Tan PN, Steinbach M, Kumar V (2013) Data mining cluster analysis: basic concepts and algorithms. In: Introduction to data mining, pp 487–533

  217. Tang WH, Wu QH (2011) Evolutionary computation. In: Tang WH, Wu QH (eds) Condition monitoring and assessment of power transformers using computational intelligence. Springer, London, pp 15–36

    Google Scholar 

  218. Theodoridis S, Koutroubas K (1999) Pattern recognition. Academic Press, Cambridge

    Google Scholar 

  219. Thomas MC, Romagnoli J (2016) Extracting knowledge from historical databases for process monitoring using feature extraction and data clustering. In: Proceedings of the 26th European symposium on computer aided process engineering—ESCAPE vol 26, pp 861–864

  220. Tran DC, Wu Z, Wang Z, Deng C (2015) A novel hybrid data clustering algorithm based on artificial bee colony algorithm and k-means. Chin J Electron 24(4):694–701

    Google Scholar 

  221. Tsai CW, Huang KW, Yang CS, Chiang MC (2015) A fast particle swarm optimization for clustering. Soft Comput 19(2):321–338

    Google Scholar 

  222. Tsay RS (2005) Analysis of financial time series. Wiley, New York

    MATH  Google Scholar 

  223. Tseng LY, Yang SB (2001) A genetic approach to the automatic clustering problem. Pattern Recognit 34(2):415–424

    MATH  Google Scholar 

  224. Van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: The 2003 congress on evolutionary computation, 2003. CEC’03, vol 1. IEEE, pp 215–220

  225. Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

    Google Scholar 

  226. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    MathSciNet  Google Scholar 

  227. Vo-Van T, Nguyen-Hai A, Tat-Hong MV, Nguyen-Trang T (2020) A new clustering algorithm and its application in assessing the quality of underground water. Sci Program 2020:6458576. https://doi.org/10.1155/2020/6458576

    Article  Google Scholar 

  228. Wang R, Zhou Y, Qiao S, Huang K (2016) Flower pollination algorithm with bee pollinator for cluster analysis. Inf Process Lett 116(1):1–14

    Google Scholar 

  229. Wang S, Wu Y (2010) Clustering analysis based on chaos genetic algorithm. In: 2010 Chinese control and decision conference. IEEE, pp 16–19

  230. Wei G, Liu H, Xie M (2009) Clustering large spatial data with local-density and its application. Inf Technol J 8(4):476–485

    Google Scholar 

  231. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Philip SY, Zhou ZH (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37

    Google Scholar 

  232. Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2(2):165–193

    MathSciNet  Google Scholar 

  233. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Google Scholar 

  234. Yang XS (2010) Firefly algorithm, nature inspired metaheuristic algorithms, 2010. LUniversityer Press, Frome

    Google Scholar 

  235. Younsi R, Wang W (2004) A new artificial immune system algorithm for clustering. In: International conference on intelligent data engineering and automated learning. Springer, Berlin, Heidelberg, pp 58–64

  236. Yu D, Xu Z, Kao Y, Lin CT (2017) The structure and citation landscape of IEEE Transactions on Fuzzy Systems (1994–2015). IEEE Trans Fuzzy Syst 26(2):430–442

    Google Scholar 

  237. Yu JY, Chong PHJ (2005) A survey of clustering schemes for mobile ad hoc networks. IEEE Commun Surv Tutor 7(1):32–48

    Google Scholar 

  238. Žalik KR (2008) An efficient k′-means clustering algorithm. Pattern Recognit Lett 29(9):1385–1391

    Google Scholar 

  239. Žalik KR, Žalik B (2011) Validity index for clusters of different sizes and densities. Pattern Recognit Lett 32(2):221–234

    MATH  Google Scholar 

  240. Zanjireh MM, Shahrabi A, Larijani H (2013) ANCH: a new clustering algorithm for wireless sensor networks

  241. Zhao M, Tang H, Guo J, Sun Y (2014) Data clustering using particle swarm optimization. In: Future information technology. Springer, Berlin, Heidelberg, pp 607–612

  242. Zhao XQ, Zhou JH (2015) Improved kernel possibilistic fuzzy clustering algorithm based on invasive weed optimization. J Shanghai Jiaotong Univ (Sci) 20(2):164–170

    Google Scholar 

  243. Zhong Y, Zhang S, Zhang L (2013) Automatic fuzzy clustering based on adaptive multi-objective differential evolution for remote sensing imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 6(5):2290–2301

    Google Scholar 

  244. Zhou Y, Wu H, Luo Q, Abdel-Baset M (2018) Automatic data clustering using nature-inspired symbiotic organism search algorithm. Knowl-Based Syst 163:546–557

    Google Scholar 

  245. Zhou Y, Wu H, Luo Q, Abdel-Baset M (2019) Automatic data clustering using nature-inspired symbiotic organism search algorithm. Knowl-Based Syst 163:546–557

    Google Scholar 

  246. Zou F, Chen D, Xu Q (2019) A survey of teaching–learning-based optimization. Neurocomputing 335:366–383

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Absalom E. Ezugwu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezugwu, A.E., Shukla, A.K., Agbaje, M.B. et al. Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature. Neural Comput & Applic 33, 6247–6306 (2021). https://doi.org/10.1007/s00521-020-05395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05395-4

Keywords