Skip to main content
Log in

Improved coral reefs optimization with adaptive \(\beta \)-hill climbing for feature selection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

For any classification problem, the dimension of the feature vector used for classification has great importance. This is because, in a high-dimensional feature vector, it is found that some are non-informative or even redundant as they do not contribute to the learning process of the classifier. Rather, they may be the reason for low classification accuracy and high training time of the learning model. To address this issue, researchers apply various feature selection (FS) methods as found in the literature. In recent years, meta-heuristic algorithms have been proven to be effective in solving FS problems. The Coral Reefs Optimizer (CRO) which is a cellular type evolutionary algorithms has good tuning between its exploration and exploitation ability. This has motivated us to present an improved version of CRO with the inclusion of adaptive \(\beta \)-hill climbing to increase the exploitation ability of CRO. The proposed method is assessed on 18 standard UCI-datasets by means of three distinct classifiers, KNN, Random Forest and Naive Bayes classifiers. It is also analyzed with 10 state-of-the-art meta-heuristics FS procedure, and the outputs show an excellent performance of the proposed FS method reaching better results than the previous methods considered here for comparison. The source code of this work is publicly available at https://github.com/ahmed-shameem/Projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Al-Betar MA (2016) \(\beta \)-hill climbing: an exploratory local search. Neural Comput Appl 28(S1):153–168. https://doi.org/10.1007/s00521-016-2328-2

    Article  Google Scholar 

  2. Al-Betar MA, Aljarah I, Awadallah MA, Faris H, Mirjalili S (2019) Adaptive \(\beta \)-hill climbing for optimization. Soft Comput 23(24):13489–13512. https://doi.org/10.1007/s00500-019-03887-7

    Article  Google Scholar 

  3. Al-Tashi Q, Kadir SJA, Rais HM, Mirjalili S, Alhussian H (2019) Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7:39496–39508. https://doi.org/10.1109/access.2019.2906757

    Article  Google Scholar 

  4. Alba E, Dorronsoro B (2008) Introduction to cellular genetic algorithms. Operations Research/Computer Science Interfaces Series. Springer, Berlin, pp 3–20. https://doi.org/10.1007/978-0-387-77610-1_1

  5. Almomani A, Alweshah M, Khalayleh SA, Al-Refai M, Qashi R (2019) Metaheuristic algorithms-based feature selection approach for intrusion detection. In: Machine learning for computer and cyber security. CRC Press, Boca Raton, pp 184–208, https://doi.org/10.1201/9780429504044-8

  6. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175. https://doi.org/10.2307/2685209

    Article  MathSciNet  Google Scholar 

  7. Alweshah M, Alzubi OA, Alzubi JA, Alaqeel S (2016) Solving attribute reduction problem using wrapper genetic programming. Int J Comput Sci Netw Secur (IJCSNS) 16(5):77

    Google Scholar 

  8. Alweshah M, Al-Daradkeh A, Al-Betar MA, Almomani A, Oqeili S (2019) \(\beta \)-hill climbing algorithm with probabilistic neural network for classification problems. J Ambient Intell Human Comput 11(8):3405–3416. https://doi.org/10.1007/s12652-019-01543-4

    Article  Google Scholar 

  9. Alweshah M, Alkhalaileh S, Albashish D, Mafarja M, Bsoul Q, Dorgham O (2020a) A hybrid mine blast algorithm for feature selection problems. Soft Comput. https://doi.org/10.1007/s00500-020-05164-4

    Article  Google Scholar 

  10. Alweshah M, Khalaileh SA, Gupta BB, Almomani A, Hammouri AI, Al-Betar MA (2020b) The monarch butterfly optimization algorithm for solving feature selection problems. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05210-0

    Article  Google Scholar 

  11. Arora S, Anand P (2019) Binary butterfly optimization approaches for feature selection. Expert Syst Appl 116:147–160. https://doi.org/10.1016/j.eswa.2018.08.051

    Article  Google Scholar 

  12. Arora S, Singh S (2018) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734. https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  13. Balochian S, Baloochian H (2019) Social mimic optimization algorithm and engineering applications. Expert Syst Appl 134:178–191. https://doi.org/10.1016/j.eswa.2019.05.035

    Article  Google Scholar 

  14. Chakraborty B (2008) Feature subset selection by particle swarm optimization with fuzzy fitness function. In: 2008 3rd international conference on intelligent system and knowledge engineering. IEEE. https://doi.org/10.1109/iske.2008.4731082

  15. Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  16. Chatterjee B, Bhattacharyya T, Ghosh KK, Singh PK, Geem ZW, Sarkar R (2020) Late acceptance hill climbing based social ski driver algorithm for feature selection. IEEE Access 8:75393–75408. https://doi.org/10.1109/ACCESS.2020.2988157

    Article  Google Scholar 

  17. Cui Y, Geng Z, Zhu Q, Han Y (2017) Review: multi-objective optimization methods and application in energy saving. Energy 125:681–704. https://doi.org/10.1016/j.energy.2017.02.174

    Article  Google Scholar 

  18. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1(3):131–156. https://doi.org/10.3233/IDA-1997-1302

    Article  Google Scholar 

  19. Dua D, Graff C (2019) Uci machine learning repository

  20. Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381. https://doi.org/10.1016/j.neucom.2015.06.083

    Article  Google Scholar 

  21. Faris H, Heidari AA, Al-Zoubi AM, Mafarja M, Aljarah I, Eshtay M, Mirjalili S (2020) Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Syst Appl 140:112898. https://doi.org/10.1016/j.eswa.2019.112898

    Article  Google Scholar 

  22. Garcia-Hernandez L, Salas-Morera L, Garcia-Hernandez J, Salcedo-Sanz S, de Oliveira JV (2019) Applying the coral reefs optimization algorithm for solving unequal area facility layout problems. Expert Syst Appl 138:112819. https://doi.org/10.1016/j.eswa.2019.07.036

    Article  Google Scholar 

  23. Garcia-Hernandez L, Garcia-Hernandez J, Salas-Morera L, Carmona-Muñoz C, Alghamdi N, de Oliveira JV, Salcedo-Sanz S (2020a) Addressing unequal area facility layout problems with the coral reef optimization algorithm with substrate layers. Eng Appl Artif Intell 93:103697. https://doi.org/10.1016/j.engappai.2020.103697

    Article  Google Scholar 

  24. Garcia-Hernandez L, Salas-Morera L, Carmona-Muñoz C, Abraham A, Salcedo-Sanz S (2020b) A novel multi-objective interactive coral reefs optimization algorithm for the unequal area facility layout problem. Swarm Evol Comput 55:100688. https://doi.org/10.1016/j.swevo.2020.100688

    Article  Google Scholar 

  25. Garcia-Hernandez L, Salas-Morera L, Carmona-Muñoz C, Garcia-Hernandez J, Salcedo-Sanz S (2020c) A novel island model based on coral reefs optimization algorithm for solving the unequal area facility layout problem. Eng Appl Artif Intell 89:103445. https://doi.org/10.1016/j.engappai.2019.103445

    Article  Google Scholar 

  26. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: Harmony search. Simulation 76(2):60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  27. Ghamisi P, Benediktsson JA (2015) Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci Remote Sens Lett 12(2):309–313. https://doi.org/10.1109/lgrs.2014.2337320

    Article  Google Scholar 

  28. Ghosh KK, Ahmed S, Singh PK, Geem ZW, Sarkar R (2020a) Improved binary sailfish optimizer based on adaptive \(\beta \)-hill climbing for feature selection. IEEE Access 8:83548–83560. https://doi.org/10.1109/access.2020.2991543

    Article  Google Scholar 

  29. Ghosh KK, Ghosh S, Sen S, Sarkar R, Maulik U (2020b) A two-stage approach towards protein secondary structure classification. Med Biol Eng Comput 58(8):1723–1737. https://doi.org/10.1007/s11517-020-02194-w

    Article  Google Scholar 

  30. Ghosh KK, Singh PK, Hong J, Geem ZW, Sarkar R (2020) Binary social MIMIC optimization algorithm with x-shaped transfer function for feature selection. IEEE Access 8:97890–97906. https://doi.org/10.1109/ACCESS.2020.2996611

    Article  Google Scholar 

  31. Ghosh M, Adhikary S, Ghosh KK, Sardar A, Begum S, Sarkar R (2018) Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods. Med Biol Eng Comput 57(1):159–176. https://doi.org/10.1007/s11517-018-1874-4

    Article  Google Scholar 

  32. Guha R, Ghosh KK, Bhowmik S, Sarkar R (2020) Mutually informed correlation coefficient (MICC)—a new filter based feature selection method. In: 2020 IEEE Calcutta conference (CALCON), pp 54–58. https://doi.org/10.1109/CALCON49167.2020.9106516

  33. Guha R, Ghosh M, Mutsuddi S, Sarkar R, Mirjalili S (2020) Embedded chaotic whale survival algorithm for filter-wrapper feature selection. Soft Comput. https://doi.org/10.1007/s00500-020-05183-1

    Article  Google Scholar 

  34. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(null):1157–1182

    MATH  Google Scholar 

  35. Hall MA, Smith LA (1999) Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. In: FLAIRS conference 1999, pp 235–239

  36. He X, Cai D, Niyogi P (2006) Laplacian score for feature selection. In: Advances in neural information processing systems, pp 507–514

  37. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95. https://doi.org/10.1109/mcse.2007.55

    Article  Google Scholar 

  38. Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2):153–158. https://doi.org/10.1109/34.574797

    Article  Google Scholar 

  39. Jona J, Nagaveni N (2012) A hybrid swarm optimization approach for feature set reduction in digital mammograms. WSEAS Trans Inf Sci Appl 9(11):340–349

    Google Scholar 

  40. Kannan SS, Ramaraj N (2010) A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm. Knowl-Based Syst 23(6):580–585. https://doi.org/10.1016/j.knosys.2010.03.016

    Article  Google Scholar 

  41. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  42. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  43. Koller D, Sahami M (1996) Toward optimal feature selection. Technical Report 1996–1977, Stanford InfoLab, http://ilpubs.stanford.edu:8090/208/, previous number = SIDL-WP-1996-0032

  44. Lai X, Zhang M, (2009) An efficient ensemble of GA and PSO for real function optimization. In: 2009 2nd IEEE international conference on computer science and information technology. IEEE. https://doi.org/10.1109/iccsit.2009.5234780

  45. Leardi R (1994) Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection. J Chemom 8(1):65–79. https://doi.org/10.1002/cem.1180080107

    Article  Google Scholar 

  46. Lee S, Soak S, Oh S, Pedrycz W, Jeon M (2008) Modified binary particle swarm optimization. Prog Nat Sci 18(9):1161–1166. https://doi.org/10.1016/j.pnsc.2008.03.018

    Article  MathSciNet  Google Scholar 

  47. Mafarja M, Mirjalili S (2018) Whale optimization approaches for wrapper feature selection. Appl Soft Comput 62:441–453. https://doi.org/10.1016/j.asoc.2017.11.006

    Article  Google Scholar 

  48. Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S (2019) Efficient hybrid nature-inspired binary optimizers for feature selection. Cogn Comput 12(1):150–175. https://doi.org/10.1007/s12559-019-09668-6

    Article  Google Scholar 

  49. Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312. https://doi.org/10.1016/j.neucom.2017.04.053

    Article  Google Scholar 

  50. Medeiros IG, Xavier JC, Canuto AMP, (2015) Applying the coral reefs optimization algorithm to clustering problems. In: 2015 International joint conference on neural networks (IJCNN). IEEE. https://doi.org/10.1109/ijcnn.2015.7280845

  51. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  52. Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11):1424–1437. https://doi.org/10.1109/tpami.2004.105

    Article  Google Scholar 

  53. Pudil P, Novovičová J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119–1125. https://doi.org/10.1016/0167-8655(94)90127-9

    Article  Google Scholar 

  54. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  55. Salcedo-Sanz S, Ser JD, Landa-Torres I, Gil-López S, Portilla-Figueras JA (2014) The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci World J. https://doi.org/10.1155/2014/739768

    Article  Google Scholar 

  56. Salcedo-Sanz S, Pastor-Sanchez A, Ser JD, Prieto L, Geem Z (2015) A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction. Renew Energy 75:93–101. https://doi.org/10.1016/j.renene.2014.09.027

    Article  Google Scholar 

  57. Salcedo-Sanz S, Camacho-Gomez C, Molina D, Herrera F (2016) A coral reefs optimization algorithm with substrate layers and local search for large scale global optimization. In: 2016 IEEE Congress on evolutionary computation (CEC). IEEE. https://doi.org/10.1109/cec.2016.7744242

  58. Sulaiman MH, Mustaffa Z, Saari MM, Daniyal H (2020) Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87:103330. https://doi.org/10.1016/j.engappai.2019.103330

    Article  Google Scholar 

  59. Sun X, Liu Y, Li J, Zhu J, Chen H, Liu X (2012) Feature evaluation and selection with cooperative game theory. Pattern Recogn 45(8):2992–3002. https://doi.org/10.1016/j.patcog.2012.02.001

    Article  Google Scholar 

  60. Syswerda G (1993) Simulated crossover in genetic algorithms. In: Foundations of genetic algorithms. Elsevier, pp 239–255. https://doi.org/10.1016/b978-0-08-094832-4.50021-0

  61. Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York

    Book  Google Scholar 

  62. Too J, Abdullah AR (2020) Binary atom search optimisation approaches for feature selection. Connect Sci. https://doi.org/10.1080/09540091.2020.1741515

    Article  Google Scholar 

  63. Van Rossum G, Drake FL (2011) The Python language reference manual. Network Theory Ltd

  64. Wilcoxon F (1992) Individual comparisons by ranking methods. Springer Series in Statistics. Springer, New York, pp 196–202. https://doi.org/10.1007/978-1-4612-4380-9_16

  65. Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  66. Xiong L, Chen RS, Zhou X, Jing C (2019) Multi-feature fusion and selection method for an improved particle swarm optimization. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-019-01624-4

    Article  Google Scholar 

  67. Yan C, Ma J, Luo H, Patel A (2019) Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets. Chemom Intell Lab Syst 184:102–111. https://doi.org/10.1016/j.chemolab.2018.11.010

    Article  Google Scholar 

  68. Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl-Based Syst 163:283–304. https://doi.org/10.1016/j.knosys.2018.08.030

    Article  Google Scholar 

  69. Zheng Z, Wu X, Srihari R (2004) Feature selection for text categorization on imbalanced data. ACM SIGKDD Explor Newsl 6(1):80–89. https://doi.org/10.1145/1007730.1007741

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially funded by Junta de Andalucía, under the Research Project UCO-FEDER 18 REF. 1265277 MD A1. We would like to thank the CMATER research laboratory of the Computer Science and Engineering Department, Jadavpur University, India for providing us the infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Garcia-Hernandez.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Ghosh, K.K., Garcia-Hernandez, L. et al. Improved coral reefs optimization with adaptive \(\beta \)-hill climbing for feature selection. Neural Comput & Applic 33, 6467–6486 (2021). https://doi.org/10.1007/s00521-020-05409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05409-1

Keywords