Skip to main content
Log in

A new formation of supervised dimensionality reduction method for moving vehicle classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Analyzing a large number of features set for the classification process entails cost and complexity. To reduce this burden, dimensionality reduction has been applied to the extracted set of features as a preprocessing step. Among dimensionality reduction algorithms, many methods fail to handle high-dimensional data and they increase information loss and are sensitive to outliers. Therefore, this research proposes a new supervised dimensionality reduction method developed using an improved formation of linear discriminant analysis with diagonal eigenvalues (LDA-DE) that simultaneously preserves the information and addresses the issues of the classification process. The proposed framework focuses on reducing the dimension of extracted features set by computing the scattered matrices from the class labels and the diagonal eigenvalue matrix. Methods to eliminate duplicate rows and columns, to avoid feature overwriting, and to remove outliers are included in the newly developed LDA-DE method. The new LDA-DE method implemented with a fuzzy random forest classifier is tested on two datasets—MIO-TCD and BIT-Vehicle—to classify the moving vehicles. The performance of our LDA-DE method is compared with five state-of-the-art dimensionality reduction methods. The experimental confusion matrix results show that the LDA-DE method generates the reduced feature vector of the objects to a maximum extent. Further, the newly developed LDA-DE method achieves the best reduction results with optimal performance parameter values (lowest mean and standard deviation and highest f-measure and accuracy) and minimal data processing time than the state-of-the-art methods, promising its application for a fast and effective dimensionality reduction for moving vehicle classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmadkhani S, Adibi P (2016) Face recognition using supervised probabilistic principal component analysis mixture model in dimensionality reduction without loss framework. IET Comput Vis 10(3):193–201

    Article  Google Scholar 

  2. Aït-Sahalia Y, Xiu D (2019) Principal component analysis of high-frequency data. J Am Stat Assoc 114(525):287–303

    Article  MathSciNet  MATH  Google Scholar 

  3. Avron H, Boutsidis C, Toledo S, Zouzias A (2013) Efficient dimensionality reduction for canonical correlation analysis. In: International conference on machine learning, pp 347–355

  4. Bunte K, Biehl M, Hammer B (2012) A general framework for dimensionality-reducing data visualization mapping. Neural Comput 24(3):771–804

    Article  MATH  Google Scholar 

  5. Chao G, Luo Y, Ding W (2019) Recent advances in supervised dimension reduction: a survey. Mach Learn Knowl Extr 1(1):341–358

    Article  Google Scholar 

  6. Chen B, Xing L, Zhao H, Zheng N, Prı JC et al (2016) Generalized correntropy for robust adaptive filtering. IEEE Trans Signal Process 64(13):3376–3387

    Article  MathSciNet  MATH  Google Scholar 

  7. Clark J, Provost F (2019) Unsupervised dimensionality reduction versus supervised regularization for classification from sparse data. Data Min Knowl Discov 33(4):871–916

    Article  MathSciNet  MATH  Google Scholar 

  8. Cornillon PA, Hengartner N, Jégou N, Matzner-Løber E (2013) Iterative bias reduction: a comparative study. Stat Comput 23(6):777–791

    Article  MathSciNet  MATH  Google Scholar 

  9. Das S, Pal NR (2019) An unsupervised fuzzy rule-based method for structure preserving dimensionality reduction with prediction ability. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 413–424

  10. Ding C, Zhou D, He X, Zha H (2006) R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization. In: Proceedings of the 23rd international conference on machine learning. ACM, pp 281–288

  11. Domingues R, Filippone M, Michiardi P, Zouaoui J (2018) A comparative evaluation of outlier detection algorithms: experiments and analyses. Pattern Recognit 74:406–421

    Article  MATH  Google Scholar 

  12. Fakhari MG, Hashemi H (2019) Fisher discriminant analysis (fda), a supervised feature reduction method in seismic object detection. Geopersia 9(1):141–149

    Google Scholar 

  13. George B (2017) A study of the effect of random projection and other dimensionality reduction techniques on different classification methods. Baselius Res 18:201769

    Google Scholar 

  14. Haut JM, Paoletti ME, Plaza J, Plaza A (2018) Fast dimensionality reduction and classification of hyperspectral images with extreme learning machines. J Real-Time Image Process 15(3):439–462

    Article  Google Scholar 

  15. Hou Y, Song I, Min HK, Park CH (2012) Complexity-reduced scheme for feature extraction with linear discriminant analysis. IEEE Trans Neural Netw Learn Syst 23(6):1003–1009

    Article  Google Scholar 

  16. Hu L, Cui J (2019) Digital image recognition based on fractional-order-PCA-SVM coupling algorithm. Measurement 145:150–159

    Article  Google Scholar 

  17. Hu P, Peng D, Guo J, Zhen L (2018) Local feature based multi-view discriminant analysis. Knowl Based Syst 149:34–46

    Article  Google Scholar 

  18. Huang P, Gao G (2016) Parameterless reconstructive discriminant analysis for feature extraction. Neurocomputing 190:50–59

    Article  Google Scholar 

  19. Hussain KF, Afifi M, Moussa G (2018) A comprehensive study of the effect of spatial resolution and color of digital images on vehicle classification. IEEE Trans Intell Transp Syst 20(3):1181–1190

    Article  Google Scholar 

  20. Jayaprakash C, Damodaran BB, Soman K et al (2018) Randomized ICA and LDA dimensionality reduction methods for hyperspectral image classification. arXiv preprint arXiv:180407347

  21. Jiang X, Li C, Sun J (2018) A modified k-means clustering for mining of multimedia databases based on dimensionality reduction and similarity measures. Cluster Comput 21(1):797–804

    Article  Google Scholar 

  22. Jin X, Zhao M, Chow TW, Pecht M (2013) Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans Ind Electron 61(5):2441–2451

    Article  Google Scholar 

  23. Kao LJ, Lee TS, Lu CJ (2016) A multi-stage control chart pattern recognition scheme based on independent component analysis and support vector machine. J Intell Manuf 27(3):653–664

    Article  Google Scholar 

  24. Labani M, Moradi P, Ahmadizar F, Jalili M (2018) A novel multivariate filter method for feature selection in text classification problems. Eng Appl Artif Intell 70:25–37

    Article  Google Scholar 

  25. Li B, Fan ZT, Zhang XL, Huang DS (2019) Robust dimensionality reduction via feature space to feature space distance metric learning. Neural Netw 112:1–14

    Article  MATH  Google Scholar 

  26. Li J, Zhang J, Pang N, Qin X (2018) Weighted outlier detection of high-dimensional categorical data using feature grouping. IEEE Trans Syst Man Cybern Syst 50(11):4295–4308

    Article  Google Scholar 

  27. Lindau B, Lindkvist L, Andersson A, Söderberg R (2013) Statistical shape modeling in virtual assembly using PCA-technique. J Manuf Syst 32(3):456–463

    Article  Google Scholar 

  28. Liu C, Wechsler H (2001) A shape-and texture-based enhanced fisher classifier for face recognition. IEEE Trans Image Process 10(4):598–608

    Article  MATH  Google Scholar 

  29. Liu LT, Dobriban E, Singer A et al (2018a) \( e \) pca: high dimensional exponential family PCA. Ann Appl Stat 12(4):2121–2150

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu W, Luo Z, Li S (2018b) Improving deep ensemble vehicle classification by using selected adversarial samples. Knowl Based Syst 160:167–175

    Article  Google Scholar 

  31. Lu H, Plataniotis KN, Venetsanopoulos A (2013) Multilinear subspace learning: dimensionality reduction of multidimensional data. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  32. Lu L, Zhao H (2017) Active impulsive noise control using maximum correntropy with adaptive kernel size. Mech Syst Signal Process 87:180–191

    Article  Google Scholar 

  33. Lu L, Zhao H, Champagne B (2017) Steady-state analysis of the maximum correntropy volterra filter with application to nonlinear channel equalization. In: 2017 25th European signal processing conference (EUSIPCO). IEEE, pp 2689–2693

  34. Markopoulos PP, Karystinos GN, Pados DA (2014) Optimal algorithms for \( l\_ \)\(1\)-subspace signal processing. IEEE Trans Signal Process 62(19):5046–5058

    Article  MathSciNet  MATH  Google Scholar 

  35. Martin-Clemente R, Zarzoso V (2016) On the link between L1-PCA and ICA. IEEE Trans Pattern Anal Mach Intell 39(3):515–528

    Article  Google Scholar 

  36. Melin P, Castillo O, Kacprzyk J (2017) Nature-inspired design of hybrid intelligent systems. Springer, Berlin

    Book  Google Scholar 

  37. Meng D, Zhao Q, Xu Z (2012) Improve robustness of sparse PCA by L1-norm maximization. Pattern Recognit 45(1):487–497

    Article  MATH  Google Scholar 

  38. Mi JX, Zhu Q, Lu J (2019) Principal component analysis based on block-norm minimization. Appl Intell 49(6):2169–2177

    Article  Google Scholar 

  39. Mishra S, Chawla M (2019) A comparative study of local outlier factor algorithms for outliers detection in data streams. In: Emerging technologies in data mining and information security. Springer, pp 347–356

  40. Nazarpour A, Adibi P (2015) Two-stage multiple kernel learning for supervised dimensionality reduction. Pattern Recognit 48(5):1854–1862

    Article  Google Scholar 

  41. Neumayer S, Nimmer M, Setzer S, Steidl G (2020) On the robust PCA and Weiszfeld’s algorithm. Appl Math Optim 82:1017–1048

    Article  MathSciNet  MATH  Google Scholar 

  42. Palese LL (2018) A random version of principal component analysis in data clustering. Comput Biol Chem 73:57–64

    Article  Google Scholar 

  43. Ritchie A, Scott C, Balzano L, Kessler D, Sripada CS (2019) Supervised principal component analysis via manifold optimization. In: Proceedings of 2019 IEEE data science workshop (DSW)

  44. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  45. Ruiz LFC, Guasselli LA, At Caten, Zanotta DC (2018) Iterative k-nearest neighbors algorithm (IKNN) for submeter spatial resolution image classification obtained by unmanned aerial vehicle (UAV). Int J Remote Sens 39(15–16):5043–5058

    Article  Google Scholar 

  46. Sachin D et al (2015) Dimensionality reduction and classification through PCA and LDA. J Comput Appl 122(17):4–8

    Google Scholar 

  47. Sahu KSKK, Satao K (2016) Image compression methods using dimension reduction and classification through PCA and LDA: a review. Int J Sci Res 5:2277–2280

    Google Scholar 

  48. Sangaiah AK, Fakhry AE, Abdel-Basset M, El-henawy I (2018) Arabic text clustering using improved clustering algorithms with dimensionality reduction. Cluster Comput 22(2):4535–4549

    Google Scholar 

  49. Santamaria I (2010) Handbook of blind source separation: Independentcomponent analysis and applications (common, p. and jutten,; 2010 [bookreview]. IEEE Signal Process Mag 30(2):133–134

    Article  Google Scholar 

  50. Shen HW, Cheng XQ, Wang YZ, Chen Y (2012) A dimensionality reduction framework for detection of multiscale structure in heterogeneous networks. J Comput Sci Technol 27(2):341–357

    Article  MATH  Google Scholar 

  51. Song Y, Li Y, Qu J (2018) A new approach for supervised dimensionality reduction. Int J Data Warehous Min (IJDWM) 14(4):20–37

    Article  Google Scholar 

  52. Sorzano COS, Vargas J, Montano AP (2014) A survey of dimensionality reduction techniques. arXiv preprint arXiv:14032877

  53. Tian Z, Ramakrishnan R, Birch LM (1996) An efficient data clustering method for very large databases. In: Proc of the ACM SIGMOD international conference on management of data, Montreal, pp 103–114

  54. Tsagkarakis N, Markopoulos PP, Sklivanitis G, Pados DA (2018) L1-norm principal-component analysis of complex data. IEEE Trans Signal Process 66(12):3256–3267

    Article  MathSciNet  MATH  Google Scholar 

  55. Vaddi R, Manoharan P (2018) Probabilistic PCA based hyper spectral image classification for remote sensing applications. In: International conference on intelligent systems design and applications. Springer, pp 863–869

  56. Velliangiri S, Alagumuthukrishnan S et al (2019) A review of dimensionality reduction techniques for efficient computation. Procedia Comput Sci 165:104–111

    Article  Google Scholar 

  57. Wang S, Lu J, Gu X, Du H, Yang J (2016) Semi-supervised linear discriminant analysis for dimension reduction and classification. Pattern Recognit 57:179–189

    Article  MATH  Google Scholar 

  58. Wen J, Fang X, Cui J, Fei L, Yan K, Chen Y, Xu Y (2018) Robust sparse linear discriminant analysis. IEEE Trans Circuits Syst Video Technol 29(2):390–403

    Article  Google Scholar 

  59. Wu H, Prasad S (2018) Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels. Pattern Recognit 74:212–224

    Article  Google Scholar 

  60. Xie H, Li J, Xue H (2017) A survey of dimensionality reduction techniques based on random projection. arXiv preprint arXiv:170604371

  61. Xu C, Tao D, Xu C, Rui Y (2014) Large-margin weakly supervised dimensionality reduction. In: International conference on machine learning, pp 865–873

  62. Yan J, Zhang B, Liu N, Yan S, Cheng Q, Fan W, Yang Q, Xi W, Chen Z (2006) Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing. IEEE Trans Knowl Data Eng 18(3):320–333

    Article  Google Scholar 

  63. Yu S, Bi J, Ye J (2008) Probabilistic interpretations and extensions for a family of 2d PCA-style algorithms. In: Proc. KDD workshop data min. using matri. tensors, pp 1–7

  64. Yu Y, Zhao H, Chen B, He Z (2016) Two improved normalized subband adaptive filter algorithms with good robustness against impulsive interferences. Circuits Syst Signal Process 35(12):4607–4619

    Article  MathSciNet  MATH  Google Scholar 

  65. Yuan S, Mao X, Chen L (2017) Multilinear spatial discriminant analysis for dimensionality reduction. IEEE Trans Image Process 26(6):2669–2681

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang X, Li K, Wu Z, Fu Y, Zhao H, Chen B (2016) Convex regularized recursive maximum correntropy algorithm. Signal Process 129:12–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Silpaja Chandrasekar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekar, K.S., Geetha, P. A new formation of supervised dimensionality reduction method for moving vehicle classification. Neural Comput & Applic 33, 7839–7850 (2021). https://doi.org/10.1007/s00521-020-05524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05524-z

Keywords

Navigation