Skip to main content
Log in

Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability statement

All data used to support the findings of this study are included in the article.

References

  1. Yan T, Cempini M, Oddo CM et al (2015) Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst 64:120–136

    Article  Google Scholar 

  2. Long Y, Du Z, Chen C, Wang W, Dong W, He L, Mao X, Xu G, Zhao G (2017) Development and analysis of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng 14:272–283. https://doi.org/10.1016/S1672-6529(16)60397-9

    Article  Google Scholar 

  3. Hussain S, Jamwal PK, Ghayesh MH (2016) Joint robotic orthoses for gait rehabilitation: an educational technical review. J Rehabil Med 48:333–338

    Article  Google Scholar 

  4. Hussain S, Xie SQ, Jamwal PK (2013) Control of a robotic orthosis for gait rehabilitation. Robot Auton Syst 61:911–919

    Article  Google Scholar 

  5. Quy-Thinh D, Shin-ichiroh Y (2018) Assist-as-needed control of a robotic orthosis actuated by pneumatic artificial muscle for gait rehabilitation. Appl Sci 8:499. https://doi.org/10.3390/app8040499

    Article  Google Scholar 

  6. Hussain S, Xie SQ, Jamwal PK (2013) Robust nonlinear control of an intrinsically compliant robotic gait training orthosis. IEEE Trans Syst Man Cybern Syst 43:655–665

    Article  Google Scholar 

  7. Choi B, Seo C, Lee S, Kim B, Kim D (2017) Swing control of a lower extremity exoskeleton using echo state networks. IFAC PapersOnLine 50(1):1328–1333. https://doi.org/10.1016/j.ifacol.2017.08.220

    Article  Google Scholar 

  8. Sunil K, Jagan D, Shaktidev M (2014) Advances in intelligent systems and computing. In: ICT and critical infrastructure: proceedings of the 48th annual convention of computer society of India-Vol II, Hyderabad, Telangana, India, pp 577–583

  9. Dai JS, Zoppi M, Kong X (2012) Advances in reconfigurable mechanisms and robots. Springer, London

    Book  Google Scholar 

  10. Sun W, Lin J, Su S, Wang N, Er MJ (2020) Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2020.2972582

    Article  Google Scholar 

  11. Yang Y, Ma L, Huang DQ (2017) Development and repetitive learning control of lower limb exoskeleton driven by electrohydraulic actuators. IEEE Trans Ind Electron 64(5):4169–4178

    Article  Google Scholar 

  12. Chen J, Hochstein J, Kim C, Damiano D, Bulea T (2018) Design advancements toward a wearable pediatric robotic knee exoskeleton for overground gait rehabilitation. In: 2018 7th IEEE international conference on biomedical robotics and biomechatronics (Biorob) Enschede, The Netherlands, August 26–29, 2018

  13. Luo Y, Wang C, Wang Z, Ma Y, Wang C, Wu; X (2017) Design and control for a compliant knee exoskeleton. In: Proceedings of the 2017 IEEE international conference on information and automation (ICIA) Macau SAR, China, July 2017

  14. Zhang X, Yue Z, Wang J Robotics in lower-limb rehabilitation after stroke, Hindawi Behav Neurol Vol 2017, Article ID 3731802, 13. https://doi.org/10.1155/2017/3731802

  15. Wang LJ, Li HY, Zhou Q, Lu RQ (2017) Adaptive fuzzy control for nonstrict feedback systems with unmodeled dynamics and fuzzy dead zone via output feedback. IEEE Trans Cybern 47(9):2400–2412

    Article  Google Scholar 

  16. Sun W, Su S, Wu Y, Xia J, Nguyen V (2019) Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2018.2890256

    Article  Google Scholar 

  17. Yin S, Shi P, Yang HY (2016) Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics. IEEE Trans Cybern 46(8):1926–1938

    Article  Google Scholar 

  18. Li YM, Tong SC (2017) Adaptive fuzzy output constrained control design for multi-input multioutput stochastic nonstrict-feedback nonlinear systems. IEEE Trans Cybern 47(12):4086–4095

    Article  Google Scholar 

  19. Yang Y, Huang D, Dong X (2019) Enhanced neural network control of lower limb rehabilitation exoskeleton by add-on repetitive learning. Neurocomputing 323:256–264. https://doi.org/10.1016/j.neucom.2018.09.085

    Article  Google Scholar 

  20. He W, Meng TT, He XY, Ge SS (2018) Unified iterative learning control for flexible structures with input constraints. Automatica 86:326–336

    Article  MathSciNet  Google Scholar 

  21. Zhao XD, Yang HJ, Karimi HR, Zhu YZ (2016) Adaptive neural control of MIMO nonstrict-feedback nonlinear systems with time delay. IEEE Trans Cybern 46(6):1337–1349

    Article  Google Scholar 

  22. Zhao XD, Yang HJ, Xia WG, Wang XY (2017) Adaptive fuzzy hierarchical sliding-mode control for a class of MIMO nonlinear timedelay systems with input saturation. IEEE Trans Fuzzy Syst 25(5):1062–1077

    Article  Google Scholar 

  23. Li YM, Tong SC (2017) Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems. IEEE Trans Fuzzy Syst 25(3):668–681

    Article  Google Scholar 

  24. Sun W, Su S-F, Xia J, Wu Y (2018) Adaptive tracking control of wheeled inverted pendulums with periodic disturbances. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2018.2884707

    Article  Google Scholar 

  25. Chen ZT, Li ZJ, Chen CLP (2017) Adaptive neural control of uncertain MIMO nonlinear systems with state and input constraints. IEEE Trans Neural Netw Learn Syst 28(6):1318–1330

    Article  Google Scholar 

  26. Song YD, Huang XC, Wen CY (2017) Robust adaptive faulttolerant PID control of MIMO nonlinear systems with unknown control direction. IEEE Trans Ind Electron 64(6):4876–4884

    Article  Google Scholar 

  27. Jin X (2017) Adaptive finite-time fault-tolerant tracking control for a class of MIMO nonlinear systems with output constraints. Int J Robust Nonlinear Control 27(5):722–741

    Article  MathSciNet  Google Scholar 

  28. Mohammadzadeh A, Ghaemi S (2016) A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network. Neurocomputing 191:200–213

    Article  Google Scholar 

  29. Young KD, Utkin VI, Özgüner Ü (1999) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol 7(3):328–342

    Article  Google Scholar 

  30. Ma Z, Sun G (2016) Adaptive sliding mode control of tethered satellite deployment with input limitation. Acta Astronaut 127:67–75

    Article  Google Scholar 

  31. Song YD, Lu Y, Gan ZX (2016) Descriptor sliding mode approach for fault/noise reconstruction and fault-tolerant control of nonlinear uncertain systems. Inf Sci 367–368:194–208

    Article  Google Scholar 

  32. Mohammed S, Huo W, Huang J, Rifai H, Amirat Y (2017) Nonlinear disturbance observer-based sliding mode control of a human-driven knee joint orthosis. Robot Auton Syst 75:41–49

    Article  Google Scholar 

  33. Teng L, Bai S (2019) Fuzzy sliding mode control of an upper-limb exoskeleton robot. In: 2019 IEEE international conference on cybernetics and intelligent systems (CIS) and IEEE conference on robotics, automation and mechatronics (RAM), Bangkok, Thailand, pp 12–17. https://doi.org/10.1109/cis-ram47153.2019.9095811

  34. Teng L, Wang Y, Cai W, Li H (2018) Fuzzy model predictive control of discrete-time systems with time-varying delay and disturbances. IEEE Trans Fuzzy Syst 26(3):1192–1206

    Article  Google Scholar 

  35. Teng L, Wang Y, Cai W, Li H (2018) Robust fuzzy model predictive control of discrete-time Takagi-Sugeno systems with nonlinear local models. IEEE Trans Fuzzy Syst 26(5):2915–2925

    Article  Google Scholar 

  36. Teng L, Wang Y, Cai W, Li H (2019) Efficient robust fuzzy model predictive control of discrete nonlinear time-delay systems via Razumikhin approach. IEEE Trans Fuzzy Syst 27(2):262–272

    Article  Google Scholar 

  37. Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  38. Han J, Yang S, Xia L, Chen Y (2020) Deterministic adaptive robust control with a novel optimal gain design approach for a fuzzy 2DOF lower limb exoskeleton robot system. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/tfuzz.2020.2999739

    Article  Google Scholar 

  39. Zhao R, Chen Y-H, Jiao S (2015) Optimal design of constraint-following control for fuzzy mechanical systems. IEEE Trans Fuzzy Syst 24(5):1108–1120

    Article  Google Scholar 

  40. Sun H, Zhao H, Huang K, Qiu M, Zhen S, Chen Y-H (2017) A fuzzy approach for optimal robust control design of an automotive electronic throttle system. IEEE Trans Fuzzy Syst 26(2):694–704

    Article  Google Scholar 

  41. Xu J, Du Y, Chen Y-H, Guo H (2018) Optimal robust control design for constrained uncertain systems: a fuzzy-set theoretic approach. IEEE Trans Fuzzy Syst 26(6):3494–3505

    Article  Google Scholar 

  42. Wu Q, Wang X, Du F, Zhang X (2015) Design and control of a powered hip exoskeleton for walking assistance. Int J Adv Robot Syst 12(3):18

    Article  Google Scholar 

  43. Ning Donghong, Sun Shuaishuai, Zhang Fei, Haiping Du, Li Weihua, Zhang Bangji (2017) Disturbance observer based takagi-sugeno fuzzy control for an active seat suspension. Mech Syst Signal Process 93:515–530

    Article  Google Scholar 

  44. Zhang Zhenxing, Liang Hongjing, Ma Hui, Pan Yingnan (2019) Reliable fuzzy control for uncertain vehicle suspension systems with random incomplete transmission signals and sensor failure. Mech Syst Signal Process 130:776–789

    Article  Google Scholar 

  45. Chen Jian, Chenfeng Xu, Chengshuai Wu, Weihua Xu (2016) Adaptive fuzzy logic control of fuel-cell-battery hybrid systems for electric vehicles. IEEE Trans Industr Inf 14(1):292–300

    Article  Google Scholar 

  46. Yang S, Han J, Xia L, Chen Y-H (2020) An optimal fuzzy-theoretic setting of adaptive robust control design for a lower limb exoskeleton robot system. Mech Syst Signal Process 141:106706. https://doi.org/10.1016/j.ymssp.2020.106706

    Article  Google Scholar 

  47. Anwara T, Al Juamily A (2014) Adaptive trajectory control to achieve smooth interaction force in robotic rehabilitation device. Procedia Comput Sci 42:160–167, International conference on robot PRIDE 2013–2014—medical and rehabilitation robotics and instrumentation

  48. Bingül Z, Og˘uzhan K (2011) A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Expert Syst Appl 38:1017–1031

    Article  Google Scholar 

  49. Jamwal PK, Xie SQ, Member S, Hussain S, Parsons JG (2014) An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans Mech 19(1)

  50. Zhong C-H, Zhao X, Liang F-Y, Ma H, Liao W-H (2019) Motion adaption and trajectory generation of stair ascent and descent with a lower limb exoskeleton for paraplegics. In: Proceedings of the 2019 IEEE/ASME international conference on advanced intelligent mechatronics Hong Kong, China, July 8–12

  51. Chen C et al (2019) Development and hybrid control of an electrically actuated lower limb exoskeleton for motion assistance. IEEE Access 7:169107–169122. https://doi.org/10.1109/ACCESS.2019.2953302

    Article  Google Scholar 

  52. Sun W, Lin J, Su S, Wang N, Er MJ (2020) Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2020.2972582

    Article  Google Scholar 

  53. Amin A, Tahamipour-Z SM, Akbarzadeh A (2019) Adaptive tracking control based on GFHM for a reconfigurable lower limb exoskeleton. In: 2019 7th international conference on robotics and mechatronics (ICRoM), pp 74–79

  54. Han J, Yang S, Xia L, Chen Y (2020) Deterministic adaptive robust control with a novel optimal gain design approach for a fuzzy 2DOF lower limb exoskeleton robot system. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/tfuzz.2020.2999739

    Article  Google Scholar 

  55. Zhang X, Li J, Ovur SE, Chen Z, Li X, Hu Z, Hu Y (2020) Novel design and adaptive fuzzy control of a lower-limb elderly rehabilitation. Electronics 9:343

    Article  Google Scholar 

  56. Rıfai H, Mohammed S, Djouani K, Amirat Y (2017) Toward lower limbs functional rehabilitation through a knee-joint exoskeleton. IEEE Trans Control Syst Technol 25(2):712–719. https://doi.org/10.1109/TCST.2016.2565385

    Article  Google Scholar 

  57. McGibbon CA, Brandon SCE, Brookshaw M, Sexton A (2017) Effects of an over-ground exoskeleton on external knee moments during the stance phase of gait in healthy adults. Knee 24:977–993. https://doi.org/10.1016/j.knee.2017.04.004

    Article  Google Scholar 

  58. Wang J, Li X, Huang TH, Yu S, Li Y, Chen T, Carriero A, Park MO, Su H (2018) Comfort-centered design of a lightweight and backdrivable knee exoskeleton. IEEE Robot Autom Lett 3(4):4265–4272. https://doi.org/10.1109/LRA.2018.2864352

    Article  Google Scholar 

  59. Alamir M, Murilo A (2008) Swing-up and stabilization of a twin-pendulum under state and control constraints by a fast NMPC scheme. Automatica 44:1319–1324. https://doi.org/10.1016/j.automatica.2007.09.020

    Article  MathSciNet  MATH  Google Scholar 

  60. Pinto AMA, Alamir M (2007) Output feedback design of a twin pendulum system in presence of sensor bias. IFAC Proc 40(12):1167–1172. https://doi.org/10.3182/20070822-3-ZA-2920.00193

    Article  Google Scholar 

  61. Sankai Y (2006) Leading edge of cybernics: robot suit HAL. In: Proceedings of international joint conference SICE-ICASE, 2006, pp P-1–P-2

  62. Huo W, Mohammed S, Moreno JC, Amirat Y (2016) Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst J 10(3):1068–1081

    Article  Google Scholar 

  63. Veale AJ, Xie SQ (2016) Towards compliant and wearable robotic orthoses: a review of current and emerging actuator technologies. Med Eng Phys 38(4):317–325. https://doi.org/10.1016/j.medengphy.2016.01.010

    Article  Google Scholar 

  64. Banala SK, Kim SH, Agrawal SK, Scholz JP (2018) Robot-assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17:2–8. https://doi.org/10.1109/TNSRE.2008.2008280

    Article  Google Scholar 

  65. Srivastava S, Kao PC, Kim SH, Stegall P, Zanotto D, Higginson JS, Agrawal SK, Scholz JP (2015) Assist-as-needed robot-aided gait training improves walking function in individuals following stroke. IEEE Trans Neural Syst Rehabil Eng 23:956–963. https://doi.org/10.1109/TNSRE.2014.2360822

    Article  Google Scholar 

  66. Chu A, Kazeroni H, Zoss A (2005) On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX). Int Conf Robot Autom Barc. https://doi.org/10.1109/ROBOT.2005.1570789

    Article  Google Scholar 

  67. Fastest Musculoskeletal Insight Engine, Normal gait. https://musculoskeletalkey.com/normal-gait/ (21.07.2020)

  68. Lanbaran NM, Celik E, Yi˘gider M (2020) Evaluation of investment opportunities with interval-valued fuzzy topsis method. Appl Math Nonlinear Sci 5(1):461–474

    Article  MathSciNet  Google Scholar 

  69. Çitil HG (2019) Investigation of a fuzzy problem by the fuzzy laplace transform. Appl Math Nonlinear Sci 4(2):407–416

    Article  MathSciNet  Google Scholar 

  70. Hussain S (2014) State-of-the-art robotic gait rehabilitation orthoses: design and control aspects. NeuroRehabilitation 35:701–709

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed as part of the doctoral thesis titled “Mechanical Design and Implementation of Advanced Control Algorithms of a Variable Parametered Strengthening Lower Extremity Exoskeleton” carried out under the supervision of Assoc. Prof. Oğuz YAKUT in the Department of Mechatronics Engineering, Faculty of Engineering at Firat University.

Funding

Firat University Scientific Research Project(FUBAP) numbered MF.17.12. provided all material needs during the project design and implementation process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Tanyildizi.

Ethics declarations

Conflict of interest

Alper Kadir TANYILDIZI, Oğuz YAKUT, Beyda TAŞAR and Ahmet Burak TATAR declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanyildizi, A.K., Yakut, O., Taşar, B. et al. Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method. Neural Comput & Applic 33, 8089–8103 (2021). https://doi.org/10.1007/s00521-020-05554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05554-7

Keywords