Skip to main content
Log in

The effect of different stopping criteria on multi-objective optimization algorithms

  • S.I. : 2019 India Intl. Congress on Computational Intelligence
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Evolutionary multi-objective optimization (EMO) refers to the domain in which an evolutionary algorithm is applied to tackle an optimization problem with multiple objective functions. The literature is rich with many approaches proposed to solve multi-objective problems including the NSGA-II, MOEA/D, and MOPSO algorithms. The proposed approaches include stand-alone as well as hybrid techniques. One critical aspect of any evolutionary algorithm (EA) is the stopping criterion. The selection of a specific stopping criterion can have a considerable effect on the performance and the final solution provided by the EA. A number of different stopping criteria, specifically designed for EMO, have been proposed in the literature. In this paper, the performance of six different EMO algorithms is tested and compared using four stopping criteria. The experiments are performed using the ZDT, DTLZ, CEC2009, Tanaka and Srivana test functions. Experimental results are analyzed to highlight the proper stopping criteria for different algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://github.com/eyadwin/Jmetal_with_Stopping_Criteria..

References

  1. Abraham A, Jain L (2005) Evolutionary multiobjective optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  2. AbuDoush I, Bataineh MQ (2015) Hybedrized NSGA-II and MOEA/D with Harmony search algorithm to solve multi-objective optimization problems. Springer, Berlin, pp 606–614

    Google Scholar 

  3. Al-Betar MA, Doush IA, Khader AT, Awadallah MA (2012) Novel selection schemes for harmony search. Appl Math Comput 218(10):6095–6117

    MATH  Google Scholar 

  4. Audet C, Bigeon J, Cartier D, Le Digabel S, Salomon L (2018) Performance indicators in multiobjective optimization. Optimization Online

  5. Brockhoff D, Wagner T, Trautmann H (2015) 2 indicator-based multiobjective search. Evolution Comput 23(3):369–395

    Article  Google Scholar 

  6. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken

    MATH  Google Scholar 

  7. Deb K, Jain H (2002) Running performance metrics for evolutionary multi-objective optimization. In: Simulated Evolution and Learning (SEAL), pp 13–20

  8. Deb K, Jain H (2012) Handling many-objective problems using an improved nsga-ii procedure. IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

  9. Deb K, Pratap A, Agarwal S, Meyarivan T (2002a) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evolution Comput 6(2):182–197

    Article  Google Scholar 

  10. Deb K, Thiele L, Laumanns M, Zitzler E (2002b) Scalable multi-objective optimization test problems. In: Proceedings of the Congress on Evolutionary Computation (CEC-2002), Honolulu, USA, pp 825–830

  11. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary multiobjective optimization, Springer, pp 105–145

  12. Doush IA, Bataineh MQ (2015) Hybedrized nsga-ii and moea/d with harmony search algorithm to solve multi-objective optimization problems. In: International conference on neural information processing, Springer, pp 606–614

  13. Doush IA, Bataineh MQ, El-Abd M (2017) The hybrid framework for multi-objective evolutionary optimization based on harmony search algorithm. In: First international conference on real time intelligent systems, Springer, pp 134–142

  14. Doush IA, Bataineh MQ, El-Abd M (2019) On different stopping criteria for multi-objective harmony search algorithms. In: Proceedings of the 2019 3rd international conference on intelligent systems, metaheuristics and swarm intelligence, pp 30–34

  15. Doush IA, Alrashdan WB, Al-Betar MA, Awadallah MA (2020) Community detection in complex networks using multi-objective bat algorithm. Int J Math Modell Numer Optim 10(2):123–140

    Google Scholar 

  16. Durillo JJ, Nebro AJ (2011) jmetal: a java framework for multi-objective optimization. Adv Eng Softw 42(10):760–771

    Article  Google Scholar 

  17. Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S (2017) Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. https://doi.org/10.1016/j.energy.2017.06.104

    Article  Google Scholar 

  18. Farag M, Mousa A, El-Shorbagy M, El-Desoky I (2020) A new hybrid metaheuristic algorithm for multiobjective optimization problems. Int J Comput Intell Syst 13(1):920–940

    Article  Google Scholar 

  19. Gutjahr WJ, Pichler A (2016) Stochastic multi-objective optimization: a survey on non-scalarizing methods. Ann Operat Res 236(2):475–499

    Article  MathSciNet  MATH  Google Scholar 

  20. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):392–403

    Article  Google Scholar 

  21. Ji J, Weng Y, Yang C (2020) A new diversity maintenance strategy based on the double granularity grid for multiobjective optimization. In: ICPRAM, pp 88–95

  22. Kadhar KMA, Baskar S (2018) A stopping criterion for decomposition-based multi-objective evolutionary algorithms. Soft Comput 22(1):253–272

    Article  Google Scholar 

  23. Ks L, Zw G, (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933

    Article  Google Scholar 

  24. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Trans Evolut Comput 13(2):284–302

    Article  Google Scholar 

  25. Luque M, Miettinen K, Ruiz AB, Ruiz F (2012) A two-slope achievement scalarizing function for interactive multiobjective optimization. Comput Oper Res 39(7):1673–1681

    Article  MathSciNet  MATH  Google Scholar 

  26. Martí L, García J, Berlanga A, Molina JM (2007) A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms. In: Proceedings of the 9th annual conference companion on Genetic and evolutionary computation, pp 2835–2842

  27. Marti L, García J, Berlanga A, Molina JM, (2009) An approach to stopping criteria for multi-objective optimization evolutionary algorithms: the mgbm criterion. In: IEEE Congress on Evolutionary Computation, CEC’09, IEEE, pp 1263–1270

  28. Martí L, García J, Berlanga A, Molina JM (2010) A progress indicator for detecting success and failure in evolutionary multi-objective optimization. In: IEEE congress on evolutionary computation, IEEE, pp 1–8

  29. Marti L, García J, Berlanga A, Molina JM, (2010) A progress indicator for detecting success and failure in evolutionary multi-objective optimization. In: IEEE congress on evolutionary computation, CEC’10., IEEE, pp 1–8

  30. Marti L, García J, Berlanga A, Molina JM (2016) A stopping criterion for multi-objective optimization evolutionary algorithms. Inform Sci 367–368:700–718

    Article  MATH  Google Scholar 

  31. Panda A, Pani S (2016) A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Appl Soft Comput 46:344–360

    Article  Google Scholar 

  32. Rangaiah GP, Feng Z, Hoadley AF (2020) Multi-objective optimization applications in chemical process engineering: Tutorial and review. Processes 5(5):155–173

    Google Scholar 

  33. Reyes Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  34. Ricart J, Hüttemann G, Lima J, Barán B (2011) Multiobjective harmony search algorithm proposals. Electron Notes Theor Comput Sci 281:51–67

    Article  Google Scholar 

  35. Sharma S, Rangaiah GP (2013) An improved multi-objective differential evolution with a termination criterion for optimizing chemical processes. Comput Chem Eng 56(2):155–173

    Article  Google Scholar 

  36. Sharma S, Rangaiah GP (2013) An improved multi-objective differential evolution with a termination criterion for optimizing chemical processes. Comput Chem Eng 56:155–173

    Article  Google Scholar 

  37. Sindhya K, Deb K, Miettinen K (2011) Improving convergence of evolutionary multi-objective optimization with local search: a concurrent-hybrid algorithm. Nat Comput 10(4):1407–1430

    Article  MathSciNet  MATH  Google Scholar 

  38. Sindhya K, Miettinen K, Deb K (2013) A hybrid framework for evolutionary multi-objective optimization. IEEE Trans Evolut Comput 17(4):495–511

    Article  MATH  Google Scholar 

  39. Wagner T, Trautmann H (2010) Online convergence detection for evolutionary multi-objective algorithms revisited. In: IEEE congress on evolutionary computation, IEEE, pp 1–8

  40. Wagner T, Trautmann H, Martí L (2011) A taxonomy of online stopping criteria for multi-objective evolutionary algorithms. In: International conference on evolutionary multi-criterion optimization, Springer, pp 16–30

  41. Wagner T, Trautmann H, Martí L (2011) A taxonomy of online stopping criteria for multi-objective evolutionary algorithms. In: Evolutionary multi-criterion optimization, Springer, pp 16–30

  42. Wong YQJ, Sharma S, Rangaiah GP (2016) Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Appl Thermal Eng 93(290):888–899

    Article  Google Scholar 

  43. Zapotecas Martinez S, Coello Coello CA (2012) A direct local search mechanism for decomposition-based multi-objective evolutionary algorithms. IEEE congress on evolutionary computation (CEC), IEEE, pp 1–8

  44. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712–731

    Article  Google Scholar 

  45. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the cec 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, Special Session on Performance Assessment of Multi-Objective Optimization Algorithms, Technical Report

  46. Zhang Q, Liu W, Li H (2009) The performance of a new version of moea/d on cec09 unconstrained mop test instances. In: IEEE congress on evolutionary computation, pp 203–208

  47. Zhao S, Suganthan PN, Zhang Q (2012) Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans Evolut Comput 16(3):442–446

    Article  Google Scholar 

  48. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evolut Comput 8(2):173–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyad Abu Doush.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Doush, I., El-Abd, M., Hammouri, A.I. et al. The effect of different stopping criteria on multi-objective optimization algorithms. Neural Comput & Applic 35, 1125–1155 (2023). https://doi.org/10.1007/s00521-021-05805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05805-1

Keywords

Navigation