Skip to main content
Log in

A real-time FPGA-based implementation for detection and sorting of bio-signals

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Extracting and analyzing relevant information from bio-signal recordings are complex tasks in which action potential detection and sorting processes take place, moreover if these are performed in real time. In this regard, the present paper introduces real-time FPGA-based architectures for detection and sorting of bio-signals, in particular macaque and human pancreatic signals. Action potential detection is performed by using an adaptive threshold. Also, during this process we have identified six different action potential shapes from the signals, which have been used to classify the action potentials. Our implementation runs at a frequency of 100 MHz with a low resource consumption for both architectures, and action potentials can be also observed in real time during a simulation in an OLED display.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Alghamdi A, Hammad M, Ugail H, Abdel-Raheem A, Muhammad K, Khalifa HS, Abd El-Latif AA (2020) Detection of myocardial infarction based on novel deep transfer learning methods for urban healthcare in smart cities. Multimedia Tools Appl. https://doi.org/10.1007/s11042-020-08769-x

    Article  Google Scholar 

  2. Azami H, Escudero J, Darzi A, Sanei S (2015) Extracellular spike detection from multiple electrode array using novel intelligent filter and ensemble fuzzy decision making. J Neurosci Methods 239:129–138. https://doi.org/10.1016/j.jneumeth.2014.10.006

    Article  Google Scholar 

  3. Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, Panzeri S (2008) Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28(22):5696–5709. https://doi.org/10.1523/JNEUROSCI.0009-08.2008

    Article  Google Scholar 

  4. Buzsaki G (2006) Rhythms of the brainy. Oxford University Press, New York. https://doi.org/10.1093/acprof:oso/9780195301069.001.000

    Book  MATH  Google Scholar 

  5. Gibson S, Judy JW, Markovic D (2010) Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction. IEEE Trans Neural Syst Rehabil Eng 18(5):469–478. https://doi.org/10.1109/TNSRE.2010.2051683

    Article  Google Scholar 

  6. Harrison R (2003) A low-power integrated circuit for adaptive detection of action potentials in noisy signals. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society (IEEE Cat. No. 03CH37439) vol 4, pp 3325–3328. https://doi.org/10.1109/IEMBS.2003.1280856

  7. Hwan Choi J, Kyung Jung H, Kim T (2006) A new action potential detector using the MTEO and its effects on spike sorting systems at low signal-to-noise ratios. IEEE Trans Biomed Eng 53(4):738–746. https://doi.org/10.1109/TBME.2006.870239

    Article  Google Scholar 

  8. Jing H, He X, Han Q, Abd El-Latif AA, Niu X (2014) Saliency detection based on integrated features. Neurocomputing 129:114–121. https://doi.org/10.1016/j.neucom.2013.02.048

    Article  Google Scholar 

  9. Koutsos E, Paraskevopoulou SE, Constandinou TG (2013) A 1.5 \(\mu \)w NEO-based spike detector with adaptive-threshold for calibration-free multichannel neural interfaces. In: Proceedings—IEEE international symposium on circuits and systems, pp 1922–1925. https://doi.org/10.1109/ISCAS.2013.6572243

  10. Lebreton F, Pirog A, Belouah I, Bosco D, Berney T, Meda P, Bornat Y, Catargi B, Renaud S, Raoux M, Lang J (2015) Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells. Diabetologia 58(6):1291–1299. https://doi.org/10.1007/s00125-015-3558-z

    Article  Google Scholar 

  11. Maji P, Mullins R (2018) On the reduction of computational complexity of deep convolutional neural networks. Entropy 20(4):305. https://doi.org/10.3390/e20040305

  12. Mukhopadhyay S, Ray GC (1998) A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans Biomed Eng 45(2):180–187

    Article  Google Scholar 

  13. Obien MEJ, Deligkaris K, Bullmann T, Bakkum DJ, Frey U (2015) Revealing neuronal function through microelectrode array recordings. Front Neurosci 8:423. https://doi.org/10.3389/fnins.2014.00423

    Article  Google Scholar 

  14. Perelman Y, Ginosar R (2007) An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Trans Biomed Eng 54(1):130–137. https://doi.org/10.1109/TBME.2006.883732

    Article  Google Scholar 

  15. Pirog A, Bornat Y, Renaud S, Perrier R, Jaffredo M, Raoux M, Lang J (2017) A versatile electrode sorting module for MEAs: implementation in a FPGA-based real-time system. In: 2017 IEEE biomedical circuits and systems conference (BioCAS), pp 1–4

  16. Platkiewicz J, Brette R (2010) A threshold equation for action potential initiation. PLoS Comput Biol 6(7):1–16. https://doi.org/10.1371/journal.pcbi.1000850

    Article  MathSciNet  Google Scholar 

  17. Qin Q, Poularakis K, Iosifidis G, Tassiulas L (2018) SDN controller placement at the edge: optimizing delay and overheads. In: IEEE INFOCOM 2018—IEEE Conference on Computer Communications, pp 684–692. https://doi.org/10.1109/INFOCOM.2018.8485963

  18. Rummens F (2015) Embedded systems for the interfacing of electronics and biology : modeling and designing an analog adaptive detection chain. Theses, Université de Bordeaux. https://tel.archives-ouvertes.fr/tel-01294213. Version corrigée/

  19. Rummens F, Renaud S, Lewis N (2015) CMOS differential neural amplifier with high input impedance. In: 2015 IEEE 13th international new circuits and systems conference (NEWCAS), pp 8–11. https://doi.org/10.1109/NEWCAS.2015.7182037

  20. Silbergleit Lehman T, Hilton AD, Lee BC (2018) Maps: understanding metadata access patterns in secure memory. In: 2018 IEEE international symposium on performance analysis of systems and software (ISPASS), pp 33–43. https://doi.org/10.1109/ISPASS.2018.00012

  21. Strauss W (2000) Digital signal processing. IEEE Signal Process Mag 17(2):52–56. https://doi.org/10.1109/79.826412

    Article  Google Scholar 

  22. Takekawa T, Ota K, Murayama M, Fukai T (2014) Spike detection from noisy neural data in linear-probe recordings. Eur J Neurosci 39(11):1943–1950. https://doi.org/10.1111/ejn.12614

    Article  Google Scholar 

  23. Wu T, Xu J, Lian Y, Khalili A, Rastegarnia A, Guan C, Yang Z (2016) A 16-channel nonparametric spike detection ASIC based on EC-PC decomposition. IEEE Trans Biomed Circuits Syst 10(1):3–17. https://doi.org/10.1109/TBCAS.2015.2389266

    Article  Google Scholar 

  24. Yang Y, Mason AJ (2017) Hardware efficient automatic thresholding for NEO-based neural spike detection. IEEE Trans Biomed Eng 64(4):826–833. https://doi.org/10.1109/TBME.2016.2580319

    Article  Google Scholar 

  25. Zhang T, Han Q, El-Latif AAA, Bai X, Niu X (2013) 2-D cartoon character detection based on scalable-shape context and hough voting. Inf Technol J 12:2342–2349

    Article  Google Scholar 

Download references

Funding

This work was partial funded by the CONACYT project FC2016-1961 Neurociencia Computacional: de la teoría al desarrollo de sistemas neuromórficos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Hugo Barron-Zambrano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iniguez-Lomeli, F.J., Bornat, Y., Renaud, S. et al. A real-time FPGA-based implementation for detection and sorting of bio-signals. Neural Comput & Applic 33, 12121–12140 (2021). https://doi.org/10.1007/s00521-021-05853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05853-7

Keywords

Navigation