Skip to main content

Advertisement

Log in

Enhanced Harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents modified versions of a recent swarm intelligence algorithm called Harris hawks optimization (HHO) via incorporating genetic operators (crossover and mutation CM) boosted by two strategies of (opposition-based learning and random opposition-based learning) to provide perfect balance between intensification and diversification and to explore efficiently the search space in order to jump out local optima. Three modified versions of HHO termed as HHOCM, OBLHHOCM and ROBLHHOCM enhance the exploitation ability of solutions and improve the diversity of the population. The core exploratory and exploitative processes of the modified versions are adapted for selecting the most important molecular descriptors ensuring high classification accuracy. The Wilcoxon rank sum test is conducted to assess the performance of the HHOCM and ROBLHHOCM algorithms. Two common datasets of chemical information are used in the evaluation process of HHOCM variants, namely Monoamine Oxidase and QSAR Biodegradation datasets. Experimental results revealed that the three modified algorithms provide competitive and superior performance in terms of finding optimal subset of molecular descriptors and maximizing classification accuracy compared to several well-established swarm intelligence algorithms including the original HHO, grey wolf optimizer, salp swarm algorithm, dragonfly algorithm, ant lion optimizer, grasshopper optimization algorithm and whale optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://brunl01.users.greyc.fr/CHEMISTRY/.

  2. https://archive.ics.uci.edu/ml/datasets/QSAR+biodeg.

References

  1. Katsila T, Spyroulias GA, Patrinos GP, Matsoukas M-T (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184

    Article  Google Scholar 

  2. Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20(3):318–331

    Article  Google Scholar 

  3. Hassan Baig M, Ahmad K, Roy S, Mohammad Ashraf J, Adil M, Haris Siddiqui M, Khan S, Amjad Kamal M, Provazník I, Choi I (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22(5):572–581

    Article  Google Scholar 

  4. Khan AU (2016) Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov Today 21(8):1291–1302

    Article  Google Scholar 

  5. Masand VH, Rastija V (2017) PyDescriptor: a new PyMOL plugin for calculating thousands of easily understandable molecular descriptors. Chemometr Intell Lab Syst 169:12–18

    Article  Google Scholar 

  6. Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2019) A modified Henry gas solubility optimization for solving Motif discovery problem. Neural Comput Appl 32(14):10759–10771

    Article  Google Scholar 

  7. Lo Y-C, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23(8):1538–1546

    Article  Google Scholar 

  8. Neggaz N, Ewees AA, Elaziz MA, Mafarja M (2019) Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst Appl 145:113103

    Article  Google Scholar 

  9. Neggaz N, Houssein EH, Hussain K (2020) An efficient Henry gas solubility optimization for feature selection. Expert Syst Appl 152:113364

    Article  Google Scholar 

  10. Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70–79

    Article  Google Scholar 

  11. Sheikhpour R, Sarram MA, Gharaghani S, Chahooki MAZ (2017) A survey on semi-supervised feature selection methods. Pattern Recogn 64:141–158

    Article  MATH  Google Scholar 

  12. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gener Comput Syst 101:646–667

    Article  Google Scholar 

  13. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2018) Feature selection: a data perspective. ACM Comput Surv 50(6):94

    Article  Google Scholar 

  14. Apolloni J, Leguizamón G, Alba E (2016) Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. Appl Soft Comput 38:922–932

    Article  Google Scholar 

  15. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris Hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Article  Google Scholar 

  16. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  17. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  18. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  19. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  20. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  21. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  MathSciNet  Google Scholar 

  22. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the autodock suite. Nat Protoc 11(5):905

    Article  Google Scholar 

  23. Jamali AA, Ferdousi R, Razzaghi S, Li J, Safdari R, Ebrahimie E (2016) Drugminer: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov Today 21(5):718–724

    Article  Google Scholar 

  24. Yuan S, Chan HS, Filipek S, Vogel H (2016) PyMOL and Inkscape bridge the data and the data visualization. Structure 24(12):2041–2042

    Article  Google Scholar 

  25. Elaziz MA, Moemen YS, Hassanien AE, Xiong S (2018) Quantitative structure-activity relationship model for HCVNS5B inhibitors based on an antlion optimizer-adaptive neuro-fuzzy inference system. Sci Rep 8(1):1506

    Article  Google Scholar 

  26. Hussien AG, Hassanien AE, Houssein EH, Bhattacharyya S, Amin M (2019) S-shaped binary whale optimization algorithm for feature selection, recent trends in signal and image processing. Springer, Berlin, pp 79–87

    Google Scholar 

  27. Taradeh M, Mafarja M, Heidari AA, Faris H, Aljarah I, Mirjalili S, Fujita H (2019) An evolutionary gravitational search-based feature selection. Inf Sci 497:219–239

    Article  Google Scholar 

  28. Zheng Y, Li Y, Wang G, Chen Y, Xu Q, Fan J, Cui X (2018) A novel hybrid algorithm for feature selection based on whale optimization algorithm. IEEE Access 7:14908–14923

    Article  Google Scholar 

  29. Ghosh M, Guha R, Sarkar R, Abraham A (2020) A wrapper-filter feature selection technique based on ant colony optimization. Neural Comput Appl 32:7839–7857

    Article  Google Scholar 

  30. Faris H, Mafarja MM, Heidari AA, Aljarah I, AlàM A-Z, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67

    Article  Google Scholar 

  31. Mafarja M, Mirjalili S (2018) Whale optimization approaches for wrapper feature selection. Appl Soft Comput 62:441–453

    Article  Google Scholar 

  32. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li X, Mirjalili S (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl Based Syst 161:185–204

    Article  Google Scholar 

  33. Hussien AG, Hassanien AE, Houssein EH (2017)Swarming behaviour of salps algorithm for predicting chemical compound activities. In: Eighth international conference on intelligent computing and information systems, IEEE, pp 315–320

  34. Houssein EH, Hosney ME, Oliva D, Mohamed WM, Hassaballah M (2020) A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput Chem Eng 133:106656

    Article  Google Scholar 

  35. Houssein EH, Hosney MEA, Elhoseny M, Oliva D, Mohamed WM, Hassaballah M (2020) Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics. Sci Rep 10(1):1–22

    Article  Google Scholar 

  36. Zainudin M, Sulaiman M, Mustapha N, Perumal T, Nazri A, Mohamed R, Manaf S (2017) Feature selection optimization using hybrid relief-f with self-adaptive differential evolution. Int J Intell Eng Inform 10(3):21–29

    Google Scholar 

  37. Martínez MJ, Razuc M, Ponzoni I (2019) MoDeSuS: A machine learning tool for selection of molecular descriptors in QSAR studies applied to molecular informatics. BioMed Res Int 1–12

  38. Martínez MJ, Dussaut JS, Ponzoni I (2018) Biclustering as strategy for improving feature selection in consensus QSAR modeling. Electron Notes Discrete Math 69:117–124

    Article  Google Scholar 

  39. Goh GB, Hodas NO, Vishnu A (2017) Deep learning for computational chemistry. J Comput Chem 38(16):1291–1307

    Article  Google Scholar 

  40. Sabando MV, Ponzoni I, Soto AJ (2019) Neural-based approaches to overcome feature selection and applicability domain in drug-related property prediction. Appl Soft Comput 85:105777

    Article  Google Scholar 

  41. Putra RID, Maulana AL, Saputro AG (2019) Study on building machine learning model to predict biodegradable-ready materials. In: AIP conference proceedings 60003–600010

  42. Dutta A, Riba P, Lladós J, Fornés A (2020) Hierarchical stochastic graphlet embedding for graph-based pattern recognition. Neural Comput Appl 32:11579–11596

    Article  Google Scholar 

  43. Goh GB, Sakloth K, Siegel C, Vishnu A, Pfaendtner J (2018) Multimodal deep neural networks using both engineered and learned representations for biodegradability prediction. arXiv:1808.04456

  44. Goh GB, Siegel C, Vishnu A, Hodas N (2018) Using rule-based labels for weak supervised learning: a ChemNet for transferable chemical property prediction. In: 24th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 302–310

  45. Atwood J, Towsley D (2016) Diffusion-convolutional neural networks. Adv Neural Inf Process Syst 29:1993–2001

    Google Scholar 

  46. Emary E, Zawbaa HM, Sharawi M (2019) Impact of Lévy flight on modern meta-heuristic optimizers. Appl Soft Comput 75:775–789

    Article  Google Scholar 

  47. Han F, Yang C, Wu Y-Q, Zhu J-S, Ling Q-H, Song Y-Q, Huang D-S (2017) A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information. IEEE/ACM Trans Comput Biol Bioinf 14(1):85–96

    Article  Google Scholar 

  48. Qian F, Chen Z, Xia Z (2020) A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems. Soft Comput 24:14825–14843

    Article  Google Scholar 

  49. Gupta S, Deep K, Heidari AA, Moayedi H, Wang M (2020) Opposition-based learning Harris Hawks optimization with advanced transition rules: principles and analysis. Expert Syst Appl 158:113510

    Article  Google Scholar 

  50. Chen H, Heidari AA, Chen H, Wang M, Pan Z, Gandomi AH (2020) Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. Future Gener Comput Syst 111:175–198

    Article  Google Scholar 

  51. Andersen JL, Flamm C, Merkle D, Stadler PF (2016) A software package for chemically inspired graph transformation. In: International conference on graph transformation. pp 73–88

  52. Ruiz IL, Gómez-Nieto MA (2017) Advantages of relative versus absolute data for the development of quantitative structure-activity relationship classification models. J Chem Inf Model 57(11):2776–2788

    Article  Google Scholar 

  53. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172

    Article  Google Scholar 

  54. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (IEEE CIMCA-IAWTIC’06) 1. pp 695–701

  55. Long W, Jiao J, Liang X, Cai S, Xu M (2019) A random opposition-based learning grey wolf optimizer. IEEE Access 7:113810–113825

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam H. Houssein.

Ethics declarations

Conflict of interest

No conflict of interest is declared by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houssein, E.H., Neggaz, N., Hosney, M.E. et al. Enhanced Harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities. Neural Comput & Applic 33, 13601–13618 (2021). https://doi.org/10.1007/s00521-021-05991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05991-y

Keywords

Navigation