Skip to main content
Log in

Grid cell modeling with mapping representation of self-motion for path integration

  • Special issue on Human-in-the-loop Machine Learning and its Applications
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The representation of grid cells in the medial entorhinal cortex region is crucial for path integration. In this paper, we proposed a grid cell modeling mechanism by mapping the agent’s self-motion in Euclidean space to the neuronal activity of grid cells. Our representational model can achieve multi-scale hexagonal patterns of grid cells from recurrent neural network (RNN) and enables path integration for 1D, 2D and 3D spaces. Different from the existing works which need to learn weights of RNN to get the vector representation of grid cells, our method can obtain weights by direct matrix operations. Moreover, compared with the classical models based on continuous attractor network, our model avoids the connection matrix’s symmetry limitation and spatial representation redundancy problems. In this paper, we also discuss the connection pattern between grid cells and place cells to demonstrate grid cells’ functioning as a metric for coding space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, Pritzel A et al (2018) Vector-based navigation using grid-like representations in artificial agents. Nature 557(7705):429–433

    Article  Google Scholar 

  2. Barry C, Burgess N (2014) Neural mechanisms of self-location. Curr Biol 24(8):R330-339

    Article  Google Scholar 

  3. Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLOS Comput Biol 5(2):1–16

    Article  MathSciNet  Google Scholar 

  4. Burgess N, Barry C, O’Keefe J (2010) An oscillatory interference model of grid cell firing. Hippocampus 17(9):801–812

    Article  Google Scholar 

  5. Bush D, Burgess N (2014) A hybrid oscillatory interference/continuous attractor network model of grid cell firing. J Neurosci 34(14):5065–5079

    Article  Google Scholar 

  6. Cueva CJ, Wei XX (2018) Emergence of grid-like representations by training recurrent neural networks to perform spatial localization. In: International conference on learning representations

  7. Daniel B, Caswell B, Daniel M, Neil B (2015) Using grid cells for navigation. Neuron 87(3):507–520

    Article  Google Scholar 

  8. de Almeida L, Idiart M, Lisman JE (2009) The input-output transformation of the hippocampal granule cells: from grid cells to place fields. J Neurosci 29(23):7504–7512

    Article  Google Scholar 

  9. Federico S, Alessandro T (2015) The self-organization of grid cells in 3d. eLife 4

  10. Fiete IR, Burak Y, Brookings T (2008) What grid cells convey about rat location. J Neurosci 28(27):6858–6871

    Article  Google Scholar 

  11. Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26(16):4266–4276

    Article  Google Scholar 

  12. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264

    Article  Google Scholar 

  13. Gao R, Xie J, Zhu SC, Wu YN (2019) Learning grid cells as vector representation of self-position coupled with matrix representation of self-motion. In: International conference on learning representations, https://openreview.net/forum?id=Syx0Mh05YQ

  14. Gil M, Ancau M, Schlesiger MI, Neitz A, Allen K, De Marco RJ, Monyer H (2018) Impaired path integration in mice with disrupted grid cell firing. Nat Neurosci 21(1):81–91. https://doi.org/10.1038/s41593-017-0039-3

    Article  Google Scholar 

  15. Gu Y, Lewallen S, Kinkhabwala AA, Domnisoru C, Yoon K, Gauthier JL, Fiete IR, Tank DW (2018) A map-like micro-organization of grid cells in the medial entorhinal cortex. Cell 175(3):736-750.e30

    Article  Google Scholar 

  16. Guanella A, Kiper D, Verschure P (2007) A model of grid cells based on a twisted torus topology. Int J Neural Syst 17(4):231–240. https://doi.org/10.1142/s0129065707001093

    Article  Google Scholar 

  17. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  Google Scholar 

  18. Heinze S, Narendra A, Cheung A (2018) Principles of insect path integration. Curr Biol 28(17):R1043-1058. https://doi.org/10.1016/j.cub.2018.04.058

    Article  Google Scholar 

  19. Jacobs J, Weidemann CT, Miller JF, Solway A et al (2013) Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 16(9):1188

    Article  Google Scholar 

  20. Mai G, Janowicz K, Yan B, Zhu R, Cai L, Lao N (2020) Multi-scale representation learning for spatial feature distributions using grid cells. In: International conference on learning representations, https://openreview.net/forum?id=rJljdh4KDH

  21. Mathis A, Herz AVM, Stemmler M (2012) Optimal population codes for space: grid cells outperform place cells. Neural Comput 24(9):2280–2317. https://doi.org/10.1162/neco_a_00319

    Article  MathSciNet  MATH  Google Scholar 

  22. Mathis A, Stemmler MB, Herz AV (2015) Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns. eLife 4:e05979

    Article  Google Scholar 

  23. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the cognitive map. Nat Rev Neurosci 7:663–678

    Article  Google Scholar 

  24. Misun K, Maguire EA (2019) Can we study 3d grid codes non-invasively in the human brain? methodological considerations and fmri findings. NeuroImage 186:667–678

    Article  Google Scholar 

  25. Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci 31:69–89

    Article  Google Scholar 

  26. Moser MB, Rowland DC, Moser EI (2015) Place cells, grid cells, and memory. Cold Spring Harb Perspect Biol 7(2):a021808

    Article  Google Scholar 

  27. Murakami H, Tomaru T, Gunji YP (2017) Interaction between path integration and visual orientation during the homing run of fiddler crabs. R Soc Open Sci 4(9):170954. https://doi.org/10.1098/rsos.170954

    Article  Google Scholar 

  28. Sorscher B, Mel G, Ganguli S, Ocko S (2019) A unified theory for the origin of grid cells through the lens of pattern formation. In: Advances in neural information processing systems, vol 32, pp 10003–10013, https://proceedings.neurips.cc/paper/2019/file/6e7d5d259be7bf56ed79029c4e621f44-Paper.pdf

  29. Stensola H, Stensola T, Solstad T, Fraland K, Moser MB, Moser EI (2012) The entorhinal grid map is discretized. Nature 492(7427):72–78

    Article  Google Scholar 

  30. Tennant SA, Fischer L, Garden DL, Gerlei KZ, Martinez-Gonzalez C, McClure C, Wood ER, Nolan MF (2018) Stellate cells in the medial entorhinal cortex are required for spatial learning. Cell Rep 22(5):1313–1324. https://doi.org/10.1016/j.celrep.2018.01.005

    Article  Google Scholar 

  31. Wei XX, Prentice J, Balasubramanian V (2015) A principle of economy predicts the functional architecture of grid cells. eLife 4:e08362. https://doi.org/10.7554/eLife.08362

    Article  Google Scholar 

  32. Welinder PE, Burak Y, Fiete IR (2010) Grid cells: the position code, neural network models of activity, and the problem of learning. Hippocampus 18(12):1283–1300

    Article  Google Scholar 

  33. Yartsev MM, Witter MP, Ulanovsky N (2011) Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479:103–107

    Article  Google Scholar 

  34. Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, Moser MB, Moser EI (2013) Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science 340(6128)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61773271 and National Natural Science Foundation of China NSAF under Grant No. U2030204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1: Grid cell modeling in 1D space

The position in 1D space is denoted as r, which is a scalar value. There are N grid cells in the neural network and \({\varvec{s}}(r)= [s_1(r),s_2(r),\ldots ,s_N(r)]^T\)(or \({\varvec{s}}=[s_1,s_2,\ldots ,s_N]^T\)) represents the grid cell population activity. The formulaic description of grid cell firing patterns we used as below:

$$\begin{aligned} s_i(r)=\frac{1}{2}\cos (k_0(r-\varDelta r))+\frac{1}{2} \end{aligned}$$

where \(\varDelta r\) and \(k_0\), respectively, determine the grid pattern phase and spatial scale. The weight can be calculated as follows:

$$\begin{aligned} {\varvec{W}}={\varvec{M}}{\varvec{K}}_0{\varvec{M}}^\dagger \end{aligned}$$

where

$$\begin{aligned} {\varvec{K}}_0&=\begin{bmatrix} 0&{} -k_0 \\ k_0&{}0 \end{bmatrix} \\ {\varvec{M}}&=\begin{bmatrix} \mathrm{cos}k_0\varDelta r_1 &{}\mathrm{sin}k_0\varDelta r_1\\ \vdots &{} \vdots \\ \mathrm{cos}k_0\varDelta r_N &{}\mathrm{sin}k_0\varDelta r_N \end{bmatrix} \end{aligned}$$

\({\varvec{M}}^\dagger\) denotes the pseudo-inverse matrix of \({\varvec{M}}\) and can be obtained through the singular value decomposition of matrix \({\varvec{M}}\). Finally, the dynamics of grid cells in 1D space:

$$\begin{aligned} \tau {\mathrm {d} {\varvec{s}}}/{\mathrm {d} t}=f(v_t{\varvec{W}}{\varvec{s}}) \end{aligned}$$
(8)

where \(f(x) = 0\) if \(x \le 0\) otherwise \(f(x)=1\) and \(v_t\) is the moving velocity in 1D space.

1.2 Appendix 2: Grid cell modeling in 2D space

The position in 2D space is denoted as \({\varvec{r}}\)=(xy). There are N grid cells in the neural network and \({\varvec{s}}({\varvec{r}})= [s_1( {\varvec{r}}),s_2({\varvec{r}}),\ldots ,s_N({\varvec{r}})]^T\)(or \({\varvec{s}}=[s_1,s_2,\ldots ,s_N]^T\)) represents the grid cell population activity. The formulaic description of grid cell firing patterns we used as below:

$$\begin{aligned} s_i({\varvec{r}})=\frac{1}{3}\sum _{j=1}^{3}\cos ({\varvec{k}}_j({\varvec{r}}-\varDelta {\varvec{r}}))+\frac{1}{3} \end{aligned}$$

where \(s_i({\varvec{r}})\) is the ith grid cell’s activity. \(\varDelta {\varvec{W}}\)=\((\varDelta x,\varDelta y)\) determines the grid pattern phase. \({\varvec{r}}_j\) can be given as the row vector of the matrix \({\varvec{K}}\):

$$\begin{aligned} {\varvec{K}}=\begin{bmatrix} {\varvec{k}}_1 \\ {\varvec{k}}_2 \\ {\varvec{k}}_3 \end{bmatrix}=k_0 \begin{bmatrix} \cos {( \frac{\pi }{6}-\theta )} &{} \sin {( \frac{\pi }{6}-\theta )} \\ \cos {(-\frac{\pi }{6}-\theta )} &{} \sin {(-\frac{\pi }{6}-\theta )} \\ \cos {(-\frac{\pi }{2}-\theta )} &{} \sin {(-\frac{\pi }{2}-\theta )} \end{bmatrix} \end{aligned}$$

where \(k_0=2\pi /T\). T and \(\theta\), respectively, represent the grid scale and direction, which are same for grid cells in a neural network. The weight can be calculated as follows:

$$\begin{aligned} {\varvec{W}}^m={\varvec{M}}{\varvec{B}}_m{\varvec{M}}^\dagger ~~(m=1,2) \end{aligned}$$

where

$$\begin{aligned} {\varvec{B}}_m&=\begin{bmatrix} \text {0 } &{} {\varvec{B}}_{m1}\\ {\varvec{B}}_{m2} &{} \text { 0} \end{bmatrix} \\ {\varvec{B}}_{m1}&=diag(\begin{bmatrix}-K_{1m},-K_{2m},-K_{3m}\end{bmatrix}) \\ {\varvec{B}}_{m2}&=diag(\begin{bmatrix}K_{1m}, K_{2m},K_{3m}\end{bmatrix})\\ g(\varDelta {\varvec{r}})&=\begin{bmatrix} \cos {\varvec{k}}_1 \varDelta {\varvec{r}}&\cdots&\cos {\varvec{k}}_3 \varDelta {\varvec{r}}&\sin {\varvec{k}}_1 \varDelta {\varvec{r}}&\cdots&\sin {\varvec{k}}_3 \varDelta {\varvec{r}} \end{bmatrix} \\ {\varvec{M}}&=\frac{1}{3}\begin{bmatrix} g(\varDelta {\varvec{r}}_1)\\ \vdots \\ g(\varDelta {\varvec{r}}_N) \end{bmatrix} \end{aligned}$$

It should be noted that \({\varvec{M}}^\dagger\) denotes the pseudo-inverse matrix of \({\varvec{M}}\) and can be obtained through the singular value decomposition of matrix \({\varvec{M}}\). Finally, the dynamics of grid cells in 2D space is:

$$\begin{aligned} \tau {\mathrm {d} {\varvec{s}}}/{\mathrm {d} t}=f\left( \sum _{i=1}^{2} v_m^t{\varvec{W}}^m{\varvec{r}}\right) \end{aligned}$$
(9)

where \(f(x) = 0\) if \(x \le 0\), otherwise \(f(x) = 0\) and \({\varvec{v}}_t=[v_1^t, v_2^t]^T\) is the moving velocity vector in 2D space.

1.3 Appendix 3: Grid coding performance analysis in 2D space

Grid coding performance analysis based on different grid scales in 2D space is illustrated in Fig. 10.

Fig. 10
figure 10

Grid coding performance analysis based on different grid scales in 2D space. a The phase distribution of sub-RNNs with different scales. b The agent’s exploring trajectory in a \(25\,\mathrm{m}^2\) area. c Histogram showing accumulated coding error of each sub-RNN after path integration following the simulation trajectory in b. d The comparison between the coding result derived from our model and the ground truth activity of the selected grid cells in a

Fig. 11
figure 11

Grid coding performance analysis based on different phase distributions in 2D space. a The phase distributions, respectively, generated by uniform random distribution, square tiling and hexagonal tiling. b The comparison between the ground truth and grid coding derived form our model for three grid cells randomly selected in the cases of different phase distribution. c Histogram showing, with different network sizes, accumulated grid coding error of the whole model in the case of different phase distributions

Grid coding performance analysis based on different phase distributions in 2D space is illustrated in Fig. 11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yan, R. & Tang, H. Grid cell modeling with mapping representation of self-motion for path integration. Neural Comput & Applic 35, 23465–23476 (2023). https://doi.org/10.1007/s00521-021-06039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06039-x

Keywords

Navigation