Skip to main content
Log in

Neural network-based robust finite-time attitude stabilization for rigid spacecraft under angular velocity constraint

  • Special Issue on Computational Intelligence-based Control and Estimation in Mechatronic Systems
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, the problem of attitude stabilization control of spacecraft under angular velocity constraint is investigated. A state-constrained finite-time attitude control scheme is designed by making full use of the model feature of the quaternion. Based on the homogeneous domination approach, the finite-time stability of the closed-loop system is proved. It proves that the angular velocity can be constrained within the limited range at any time. For the attitude loop dynamics subsystem with external disturbances, based on a radial basis function neural network, an integral terminal sliding mode controller is proposed. Finally, the validity and advantages of the proposed control scheme are demonstrated in the simulation section compared with the other two control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gui H, Vukovich G (2017) Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs. Int J Robust Nonlinear Control 27(1):15–38

    MathSciNet  MATH  Google Scholar 

  2. Du H, Zhang J, Wu D, Zhu W, Li H, Chu Z (2020) Fixed-time attitude stabilization for a rigid spacecraft. ISA Trans 98:263–270

    Google Scholar 

  3. Cong Y, Du H, Jin Q (2020) Formation control for multiquadrotor aircraft: connectivity preserving and collision avoidance. Int J Robust Nonlinear Control 30(6):2352–2366

    MathSciNet  MATH  Google Scholar 

  4. Krstic M, Tsiotras P (1999) Inverse optimal stabilization of a rigid spacecraft. IEEE Trans Autom Control 44(5):1042–1049

    MathSciNet  MATH  Google Scholar 

  5. Park Y (2005) Robust and optimal attitude stabilization of spacecraft with external disturbances. Aerosp Sci Technol 9(3):253–259

    MATH  Google Scholar 

  6. Gasagrandea D, Astolfi A, Parisini T (2008) Global asymptotic stabilization of the attitude and the angular rates of an underactuated non-symmetric rigid body. Automatica 44(7):1781–1789

    MathSciNet  MATH  Google Scholar 

  7. Jiang B, Lu J, Liu Y, Cao J (2020) Periodic event-triggered adaptive control for attitude stabilization under input saturation. IEEE Trans Circuits Syst I(67):249–258

    MathSciNet  MATH  Google Scholar 

  8. Cai M, Xiang Z (2018) Adaptive finite-time control of a class of non-triangular nonlinear systems with input saturation. Neural Comput Appl 29:565–576

    Google Scholar 

  9. Wang F, Hou M, Cao X (2019) Event-triggered backstepping control for attitude stabilization of spacecraft. J Frank Ins Eng Appl Math 356(16):9474–9501

    MathSciNet  MATH  Google Scholar 

  10. Wang X, Li S, Chen M (2018) Composite backstepping consensus algorithms of leader-follower higher-order nonlinear multiagent systems subject to mismatched disturbances. IEEE Trans Cyber 48(6):1935–1946

    Google Scholar 

  11. Wang H, Mi C, Cao Z, Zheng J, Man Z, Jin X, Tang H (2020) Precise discrete-time steering control for robotic fish based on data-assisted technique and super-twisting-like algorithm. IEEE Trans Ind Electron 67(12):10587–10599

    Google Scholar 

  12. Zhang J, Wang H, Ma M, Yu M, Yazdani A, Chen L (2020) Active front steering-based electronic stability control for steer-by-wire vehicles via terminal sliding mode and extreme learning machine. IEEE Trans Veh Technol 69(12):14713–14726

    Google Scholar 

  13. Hu Y, Wang H, He S, Zheng J, Ping Z, Shao Ke, Cao Z, Man Z (2021) Adaptive tracking control of an electronic throttle valve based on recursive terminal sliding mode. IEEE Trans Veh Technol 70(1):251–262

    Google Scholar 

  14. Zhang J, Wang H, Zheng J, Cao Z, Man Z, Yu M, Chen L (2020) Adaptive sliding mode-based lateral stability control of steer-by-wire vehicles with experimental validations. IEEE Trans Veh Technol 69(9):9589–9600

    Google Scholar 

  15. Zhang J, Wang H, Cao Z, Zheng J, Yu M, Yazdani A, Shahnia F (2019) Fast nonsingular terminal sliding mode control for permanent magnet linear motor via ELM. Neural Comput Appl 32:14447–14457

    Google Scholar 

  16. Chen L, Wang H, Huang Y, Ping Z, Yu M, Ye M, Hu Y (2020) Robust hierarchical terminal sliding mode control of two-wheeled self-balancing vehicle using perturbation estimation. Mech Syst Sig Process. https://doi.org/10.1016/j.ymssp.2019.106584

    Article  Google Scholar 

  17. Ding S, Liu L, Park J (2019) A novel adaptive nonsingular terminal sliding mode controller design and its application to active front steering system. Int J Robust Nonlinear Control 29(12):4250–4269

    MathSciNet  MATH  Google Scholar 

  18. Hu Y, Wang H (2020) Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer. Mech Syst Sig Process 135:1–18

    Google Scholar 

  19. Ning B, Han Q, Zuo Z (2019) Practical fixed-time consensus for integrator-type multi-agent systems: a time base generator approach. Automatica 105:406–414

    MathSciNet  MATH  Google Scholar 

  20. Ding S, Park J, Chen C (2020) Second-order sliding mode controller design with output constraint. Automatica 112:1–8

    MathSciNet  MATH  Google Scholar 

  21. Ning B, Han Q, Zuo Z, Jin J, Zheng J (2020) Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology. IEEE Trans Cybern 48(5):1577–1590

    Google Scholar 

  22. Wang K, Liu X, Jing Y (2020) Robust finite-time \(H_{\infty }\) congestion control for a class of AQM network systems. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05168-z

    Article  Google Scholar 

  23. Du H, Cheng Y, Wen G, Lv J (2021) Design and implementation of bounded finite-time control algorithm for speed regulation of permanent magnet synchronous motor. IEEE Trans Ind Electron 67(3):2417–2426

    Google Scholar 

  24. Hu Y, Wang H, Cao Z, Zheng J, Ping Z, Chen L, Jin X (2019) Extreme-learning-machine-based FNTSM control strategy for electronic throttle. Neural Comput Appl 32:14507–14518

    Google Scholar 

  25. Du H, Wen G, Wu D, Cheng Y, Lu J (2020) Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems. Automatica 113:1087–1097

    MathSciNet  MATH  Google Scholar 

  26. Ding S, Mei K, Li S (2019) A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans Automat Control 64(6):2545–2552

    MathSciNet  MATH  Google Scholar 

  27. Wang X, Wang G, Li S (2020) Distributed finite-time optimization for integrator chain multiagent systems with disturbances. IEEE Trans Automat Control 65(12):5296–5311

    MathSciNet  MATH  Google Scholar 

  28. Chen C, Sun Z (2020) Output feedback finite-time stabilization for high order planar systems with an output constraint. Automatica. https://doi.org/10.1016/j.automatica.2020.108843

    Article  MATH  Google Scholar 

  29. Ding S, Park J, Tayebi Chen C (2020) Second-order sliding mode controller design with output constraint. Automatica. https://doi.org/10.1016/j.automatica.2019.108704

    Article  MATH  Google Scholar 

  30. Zhu Z, Xia Y, Fu M (2011) Attitude stabilization of rigid spacecraft with finite-time convergence. Int J Robust Nonlinear Control 21(6):686–702

    MathSciNet  MATH  Google Scholar 

  31. Du H, Li S (2012) Finite-time attitude stabilization for a spacecraft using homogeneous method. J Guid Control Dyn 35(3):740–748

    Google Scholar 

  32. Wie B, Lu J (1995) Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints. J Guid Control Dyn 18(6):1372–1379

    MATH  Google Scholar 

  33. Shen Q, Yue C, Goh C, Wu B, Wang D (2018) Rigid-body attitude stabilization with attitude and angular rate constraints. Automatica 90:157–163

    MathSciNet  MATH  Google Scholar 

  34. Sun L (2020) Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking. IEEE Trans Ind Electron 67(4):3107–3115

    Google Scholar 

  35. Habibi H, Nohooji R, Howarda L, Simani S (2019) Fault-tolerant neuro adaptive constrained control of wind turbines for power regulation with uncertain wind speed variation. Energies 12:24. https://doi.org/10.3390/en12244712

    Article  Google Scholar 

  36. Habibi H, Nohooji R, Howarda L (2019) Backstepping nussbaum gain dynamic surface control for a class of input and state constrained systems with actuator faults. Inf Sci 482:27–46

    MathSciNet  MATH  Google Scholar 

  37. Shuster M (1993) A survey of attitude representations. J Astronaut Sci 41(4):439–517

    MathSciNet  Google Scholar 

  38. Bhat S, Bernstein D (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Opt 38(3):751–766

    MathSciNet  MATH  Google Scholar 

  39. Bhat S, Bernstein D (1997) Finite-time stability of homogeneous systems. In: Proceedings of the American Control Conference. Albuquerque, NewMexico, 2513-2514

  40. Hong Y, Huang J, Xu Y (2001) On an output feedback finite-time stabilization problem. IEEE Trans Automat Control 46(2):305–309

    MathSciNet  MATH  Google Scholar 

  41. Hong Y, Xu Y, Huang J (2002) Finite-time control for robot manipulators. Syst Control Lett 46(4):185–200

    MathSciNet  MATH  Google Scholar 

  42. Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964

    MathSciNet  MATH  Google Scholar 

  43. Khalil H (2002) Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  44. Zhu W, Chen D, Du H, Wang X (2020) Position control for permanent magnet synchronous motor based on neural network and terminal sliding mode control. Trans Inst Meas Control 42(9):1632–1640

    Google Scholar 

  45. Tayebi A, McGilvray S (2006) Attitude stabilization of a VTOL quadrotor aircraft. EEE Trans Control Syst Technol 14(3):562–571

    Google Scholar 

  46. Zuo Z, Ru P (2014) Augmented \(L_1\) adaptive tracking control of quad-rotor unmanned aircrafts. IEEE Trans Aerosp Electron Syst 50(4):3090–3101

    Google Scholar 

  47. Zhao B, Xian B, Zhang Y, Zhang X (2015) Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans Ind Electron 62(5):2891–2902

    Google Scholar 

  48. Du H, Zhu W, Wen G, Duan Z, Lv J (2017) Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms. IEEE Trans Cybern 49(1):342–353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China under Grant Nos. 62073113, 62003122, 61673153, 61773216, Natural Science Foundation of Anhui Province of China under Grant Nos. 2008085UD03, 1808085MF180, and the Fundamental Research Funds for the Central Universities of China under Grant No. PA2020GDKC0016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Du, H., Ding, L. et al. Neural network-based robust finite-time attitude stabilization for rigid spacecraft under angular velocity constraint. Neural Comput & Applic 34, 5107–5117 (2022). https://doi.org/10.1007/s00521-021-06056-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06056-w

Keywords

Navigation