Skip to main content
Log in

Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP)

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Upgrading health reality is the responsibility of all, it is necessary to think about the design of a smart system based on modern technologies to reduce the time and effort exerted on the competent authorities in both health and environmental sectors furthermore making their work environment smart and easy to enable the creativity and innovation as well as to reduce the material costs granted by state of this case “environment.” The process to find a solution for the problem of a triangle as shown in Figure (1) with contradictory heads is a very important and difficult issue in the field of health and environment, these are: (to optimize time utilization, and minimize the human errors, that accompany this human effort as much as possible, and to reduce material costs). Therefore, the idea of Internet technology and the Intelligent Big Data Analysis was developed to design an integrate electronic system of hardware to be developed in different and specific locations to collect information on concentrations that cause air pollution. So, it was invested an idea of Internet of things technology and intelligent data analysis ("Internet of things" and "Intelligent Data Analysis") for the construction of an integrated system of Hardware entities and Software entities placed. The aim of this work is to build a programmable system capable of predicting the pollutant concentrations within the next 48 h called intelligent forecaster of concentrations caused air pollution (IFCsAP) and making the machine the primary source of information after these concentrations are collected and stored in real time. On this basis, we will rely on modern technologies to reach this goal. The proposed design is highly efficient, cost-effective and easy to use and can be deployed in all places (environment with concentrations of air pollution). The main objective of the proposed system is to issue periodic reports (within 48 h of the future) based on the information input from different stations in real time. These reports are issued based on the readings of sensors planted at each station. Each sensor has a measurement of one or more concentrations that cause air pollution. Designed system consists of three basic phases: the construction phase of an integrated electronic circuit consisting of several devices (Modern, LoRa, Waspmate Platform, Arduino, Five sensors).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

DLSTM:

Developed long short–term memory

LSTM:

Long short-term memory

PSO:

Particle swarm optimization

SMAPE:

Symmetric mean absolute percentage error

PM2.5:

Particulate matter that has a diameter of less than 2.5 µm

PM10:

Particulate matter 10 µm or less in diameter

O3:

Ozone is the unstable triatomic form of oxygen

Sox:

Sulfur oxides

CO:

Carbon monoxide

NOx:

Nitrogen oxides

⊙:

Is the element-wise product or Hadamard product

 ⊗ :

Outer products will be represented

σ :

Represents the sigmoid function

at:

Input activation

it:

Input gate

ft:

Forget gate

ot:

Output gate

Statet:

Internal state

Outt :

Output

W :

The weights of the input

U :

The weights of recurrent connections

\(V_{i}^{t}\) :

Particle velocity i in swarm in dimension j and frequency t.

\(X_{i}^{t}\) :

The location of the particle i in a swarm in dimension j and frequency t.

c 1 :

Acceleration factor related to Pbest.

c 2 :

Acceleration factor related to gbest.

\(r_{1}^{t}\), \(r_{2}^{t}\) :

Random number between 0 and 1.

t :

Number of occurrences specified by type of problem.

\(G_{{{\text{best}},i}}^{t} \) :

Gbest position of swarm

\(P_{{{\text{best}},i}}^{t}\) :

Pbest position of particle

References

  1. Al-Janabi S, Alkaim AF, Adel Z (2020) An innovative synthesis of deep learning techniques (DCapsNet and DCOM) for generation electrical renewable energy from wind energy. Soft Comput 24:10943–10962. https://doi.org/10.1007/s00500-020-04905-9

    Article  Google Scholar 

  2. Alkaim AF, Al_Janabi S (2020) Multi objectives optimization to gas flaring reduction from oil production. In: Farhaoui Y (ed) Big data and networks technologies. BDNT 2019. Lecture notes in networks and systems, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-030-23672-4_10

  3. Chen B et al (2018) How do people in different places experience different levels of air pollution? Using worldwide Chinese as a lens. Environ Pollut 238:874–883. https://doi.org/10.1016/J.ENVPOL.2018.03.093

    Article  Google Scholar 

  4. Donahue NM (2018) Air pollution and air quality. Green Chem. https://doi.org/10.1016/B978-0-12-809270-5.00007-8

    Article  Google Scholar 

  5. Das HS, Roy P (2019) A deep dive into deep learning techniques for solving spoken language identification problems. Intell Speech Signal Process. https://doi.org/10.1016/B978-0-12-818130-0.00005-2

    Article  Google Scholar 

  6. Aunan K, Hansen MH, Liu Z, Wang S (2019) The hidden hazard of household air pollution in rural China. Environ Sci Policy 93:27–33. https://doi.org/10.1016/J.ENVSCI.2018.12.004

    Article  Google Scholar 

  7. Basavaraju S, Gaj S, Sur A (2019) Object memorability prediction using deep learning: location and size bias. J Vis Commun Image Represent 59:117–127. https://doi.org/10.1016/J.JVCIR.2019.01.008

    Article  Google Scholar 

  8. Al-Janabi S, Alkaim AF (2020) A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation. Soft Comput 24(1):555–569. https://doi.org/10.1007/s00500-019-03972-x

    Article  Google Scholar 

  9. Al-Janabi S, Mahdi MA (2019) Evaluation prediction techniques to achievement an optimal biomedical analysis. Int J Grid Util Comput 10(5):512–527

    Article  Google Scholar 

  10. Chien J-T, Chien J-T (2019) Deep neural network. Source Sep Mach Learn. https://doi.org/10.1016/B978-0-12-804566-4.00019-X

    Article  Google Scholar 

  11. Al-Janabi S, Alkaim AF (2021) A comparative analysis of DNA protein synthesis for solving optimization problems: a novel nature-inspired algorithm. In: Abraham A, Sasaki H, Rios R, Gandhi N, Singh U, Ma K (eds) Innovations in bio-inspired computing and applications. IBICA 2020. Advances in Intelligent Systems and Computing, vol 1372. Springer, Cham. https://doi.org/10.1007/978-3-030-73603-3_1

  12. Congcong W, Shufu L, Xiaojing Y, Ling P, Xiang L, Yuan H, Tianhe C (2019) A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. J Sci Total Environ 654:1091–1099

    Article  Google Scholar 

  13. Al-Janabi S et al (2015) Design and evaluation of a hybrid system for detection and prediction of faults in electrical transformers. Int J Elect Power Energy Syst 67:324–335. https://doi.org/10.1016/j.ijepes.2014.12.005

    Article  Google Scholar 

  14. Bianchi FM, Maiorino E, Kampffmeyer MC et al (2017) An overview and comparative analysis of recurrent neural networks for short term load forecasting. https://doi.org/10.1007/978-3-319-70338-1

  15. Al-Janabi S, Salman AH (2021) "Sensitive integration of multilevel optimization model in human activity recognition for smartphone and smartwatch applications". In: Big data mining and analytics, vol 4, no 2, pp 124–138. https://doi.org/10.26599/BDMA.2020.9020022

  16. Samaher AJ (2020) Smart system to create an optimal higher education environment using IDA and IOTs. Int J Comput Appl 42(3):244–259. https://doi.org/10.1080/1206212X.2018.1512460

    Article  Google Scholar 

  17. Al-Janabi S, Al-Shourbaji I, Shojafar M, Abdelhag M (2017) Mobile cloud computing: challenges and future research directions. In: 2017 10th international conference on developments in esystems engineering (DeSE), pp 62–67. https://doi.org/10.1109/DeSE.2017.21

  18. Tebrean B, Crisan S, Muresan C, Crisan TE (2017) Low cost command and control system for automated infusion devices. In: Vlad S, Roman N (eds) International conference on advancements of medicine and health care through technology; 12th–15th October 2016, Cluj-Napoca, Romania. IFMBE Proceedings, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-52875-5_18

  19. Li X, Peng L, Yao X, Cui S, Hu Y, You C, Chi T (2017) Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation. EnvironPollut 231(Pt 1):997–1004. https://doi.org/10.1016/j.envpol.2017.08.114

    Article  Google Scholar 

  20. Wu L, Li N, Yang Y (2018) Prediction of air quality indicators for the Beijing-Tianjin-Hebei region. J Clean Prod 196:682–687. https://doi.org/10.1016/j.jclepro.2018.06.068

    Article  Google Scholar 

  21. Wen C et al (2019) A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci Total Environ 654:1091–1099. https://doi.org/10.1016/j.scitotenv.2018.11.086

    Article  Google Scholar 

  22. Shang Z, Deng T, He J, Duan X (2019) A novel model for hourly PM2.5 concentration prediction based on CART and EELM. Sci Total Environ 651:3043–3052. https://doi.org/10.1016/j.scitotenv.2018.10.193

    Article  Google Scholar 

  23. Li H, Wang J, Li R, Lu H (2019) Novel analysis–forecast system based on multi-objective optimization for air quality index. J Clean Prod 208:1365–1383. https://doi.org/10.1016/j.jclepro.2018.10.129

    Article  Google Scholar 

  24. Kim SY, Bechle M, Hankey S, Sheppard L, Szpiro AA, Marshall JD (2020) Concentrations of criteria pollutants in the contiguous US, 1979–2015: role of prediction model parsimony in integrated empirical geographic regression. PLoS ONE. https://doi.org/10.1371/journal.pone.0228535

    Article  Google Scholar 

  25. Matos J, Faria RPV, Nogueira IBR et al (2019) Optimization strategies for chiral separation by true moving bed chromatography using Particles Swarm Optimization (PSO) and new Parallel PSO variant. Comput Chem Eng 123:344–356. https://doi.org/10.1016/J.COMPCHEMENG.2019.01.020

    Article  Google Scholar 

  26. Al-Janabi S, Alwan E (2017) Soft mathematical system to solve black box problem through development the FARB based on hyperbolic and polynomial functions. In: 2017 10th international conference on developments in esystems engineering (DeSE), pp 37–42. https://doi.org/10.1109/DeSE.2017.23

  27. Zhou B-Z, Liu X-F, Cai G-P et al (2019) Motion prediction of an uncontrolled space target. Adv Sp Res 63:496–511. https://doi.org/10.1016/J.ASR.2018.09.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaher Al-Janabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Main steps for training LSTM–RNN

In this section, we will show the main steps required to take the decision based on LSTM-RNN, also show how can update variables.

Step 1: The forward components

Step 1.1: Compute the gates

Memory cell:

$$ a_{t} = \tanh \left( {W_{a} \cdot X_{t} + U_{a} \cdot {\text{out}}_{t - 1 } + b_{a} } \right) $$
(1)

Input gate:

$$ i_{t} = \sigma \left( {WI \cdot X_{t} + U_{i} \cdot {\text{out}}_{t - 1 } + b_{i} } \right) $$
(2)

Forget gate:

$$ f_{t} = \sigma \left( {Wf \cdot X_{t} + U_{f} \cdot {\text{out}}_{t - 1} + b_{f} } \right) $$
(3)

Output gate:

$$ o_{t} = \sigma \left( {Wo \cdot X_{t} + U_{o} \cdot {\text{out}}_{t - 1} + b_{o} } \right) $$
(4)

Then fined:

Internal state:

$$ {\text{State}}_{t} = a_{t} \odot i_{t} + f_{t} \odot {\text{state}}_{t - 1} $$
(5)

Output:

$$ {\text{out}}_{t} = \tanh \left( {{\text{state}}} \right) \odot {\text{ot}} $$
(6)

where

$$ {\text{Gate}}\;S_{t} = \left[ {\begin{array}{*{20}c} {a_{t} } \\ {i_{t} } \\ {\begin{array}{*{20}c} {f_{t} } \\ {o_{t} } \\ \end{array} } \\ \end{array} } \right],\;\;W = \left[ {\begin{array}{*{20}c} {W_{a} } \\ {W_{i} } \\ {\begin{array}{*{20}c} {W_{f} } \\ {W_{o} } \\ \end{array} } \\ \end{array} } \right],\;\;U = \left[ {\begin{array}{*{20}c} {U_{a} } \\ {U_{i} } \\ {\begin{array}{*{20}c} {U_{f} } \\ {U_{o} } \\ \end{array} } \\ \end{array} } \right],\;\;b = \left[ {\begin{array}{*{20}c} {b_{a} } \\ {b_{i} } \\ {\begin{array}{*{20}c} {b_{f} } \\ {b_{o} } \\ \end{array} } \\ \end{array} } \right] $$

Step. 2: The backward components:

Step 2.1. Find

\(\Delta t\) the output difference as computed by any subsequent.

\(\Delta {\text{OUT}}\) the output difference as computed by the next time-step

$$ \delta {\text{out}}_{t} = \Delta_{t} + \Delta {\text{out}}_{t} $$
(7)
$$ \delta {\text{state}}_{t} = \delta {\text{out}}_{t } \odot o_{t} \odot \left( { 1 - \tanh^{2} \left( {{\text{state}}_{t} } \right)} \right) + \delta {\text{state}}_{t + 1} \odot f_{t + 1} $$
(8)

Step 2.2: Gives

$$ \delta a_{t} = \delta {\text{state}}_{t} \odot i_{t} \odot \left( {1 - a_{t}^{2} } \right) $$
(9)
$$ \delta i_{t} = \delta {\text{state}}_{t} \odot a_{t} \odot i_{t} \odot \left( {1 - i_{t} } \right) $$
(10)
$$ \delta f_{t} = \delta {\text{state}}_{t} \odot {\text{state}}_{t - 1} \odot f_{t} \odot \left( {1 - f_{t} } \right) $$
(11)
$$ \delta o_{t} = \delta {\text{out}}_{t} \odot \tanh ({\text{state}}_{t} ) \odot o_{t} \odot \left( {1 - o_{t} } \right) $$
(12)
$$ \delta x_{t} = W^{t} \cdot \delta {\text{state}}_{t} $$
(13)
$$ \delta {\text{out}}_{t - 1} = U^{t} \cdot \delta {\text{state}}_{t} $$
(14)

Step 3: update to the internal parameter

$$ \delta W = \mathop \sum \limits_{t = 0}^{T} \delta {\text{gates}}_{t} \otimes x_{t} $$
(15)
$$ \delta U = \mathop \sum \limits_{t = 0}^{T} \delta {\text{gates}}_{t + 1} \otimes {\text{out}}_{t} $$
(16)
$$ \delta b = \mathop \sum \limits_{t = 0}^{T} \delta {\text{gates}}_{t + 1} $$
(17)

2.1 Example of LSTM

This example will show calculations performed in LSTM.

Assume the out internal weights:

$$ W_{a} = \left[ {\begin{array}{*{20}c} {0.45} \\ {0.25} \\ \end{array} } \right],\;\;U_{a} = \left[ {0.15} \right],\;\;b_{a} = \left[ {0.2} \right] $$
$$ W_{i} = \left[ {\begin{array}{*{20}c} {0.95} \\ {0.8} \\ \end{array} } \right],\;\;U_{i} = \left[ {0.8} \right],\;\;b_{i} = \left[ {0.65} \right] $$
$$ W_{f} = \left[ {\begin{array}{*{20}c} {0.7} \\ {0.45} \\ \end{array} } \right],\;\;U_{f} = \left[ {0.1} \right],\;\;b_{f} = \left[ {0.15} \right] $$
$$ W_{o} = \left[ {\begin{array}{*{20}c} {0.6} \\ {0.4} \\ \end{array} } \right],\;\;U_{o} = \left[ {0.25} \right],\;\;b_{o} = \left[ {0.1} \right] $$

Let input data:

$$ X_{0} = \left[ {\begin{array}{*{20}c} 1 \\ 2 \\ \end{array} } \right]\;{\text{with}}\;{\text{label}}:0.5 $$
$$ X_{1} = \left[ {\begin{array}{*{20}c} {0.5} \\ 3 \\ \end{array} } \right]\;{\text{with}}\;{\text{label:}}\;1.25 $$

Forward t = 0

$$ a_{0} = \tanh (W_{a} * x_{0} + U_{a} * {\text{out}}_{ - 1} + b_{a} = \tanh \left( {\left[ {\begin{array}{*{20}c} {0.45} & {0.25} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 1 \\ 2 \\ \end{array} } \right] + \left[ {0.15} \right]\left[ 0 \right] + [0.2]} \right) = 0.81775 $$
$$ i_{0} = \sigma (W_{i} * x_{0} + U_{i} * {\text{out}}_{ - 1} + b_{i} = \sigma \left( {\left[ {\begin{array}{*{20}c} {0.95} & {0.8} \\ \end{array} } \right] \left[ {\begin{array}{*{20}c} 1 \\ 2 \\ \end{array} } \right] + \left[ {0.8} \right]\left[ 0 \right] + [0.65]} \right) = 0.96083 $$
$$ f_{0} = \sigma (W_{f} * x_{0} + U_{f} * {\text{out}}_{ - 1} + b_{f} = \sigma \left( {\left[ {\begin{array}{*{20}c} {0.7} & {0.45} \\ \end{array} } \right] \left[ {\begin{array}{*{20}c} 1 \\ 2 \\ \end{array} } \right] + \left[ {0.1} \right]\left[ 0 \right] + [0.15]} \right) = 0.85195 $$
$$ o_{0} = \sigma (W_{o} * x_{0} + U_{o} * {\text{out}}_{ - 1} + b_{o} = \sigma \left( {\left[ {\begin{array}{*{20}c} {0.6} & {0.4} \\ \end{array} } \right] \left[ {\begin{array}{*{20}c} 1 \\ 2 \\ \end{array} } \right] + \left[ {0.25} \right]\left[ 0 \right] + [0.1]} \right) = 0.81757 $$
$$ {\text{state}}_{0} = a_{0} * i_{0} + f_{0} * {\text{state}}_{ - 1} = 0.81775 * 0.96083 + 0.85195 * 0 = 0.78572 $$
$$ {\text{out}}_{0} = \tanh \left( {{\text{state}}_{0} } \right) * o_{0} = \tanh \left( {0.78572} \right) * 0.81757 = 0.53631 $$
$$ a_{1} = \tanh (W_{a} * x_{1} + U_{a} * {\text{out}}_{0} + b_{a} = \tanh \left( {\left[ {0.45\;\;0.25 } \right]\left[ {\begin{array}{*{20}c} {0.5} \\ 3 \\ \end{array} } \right] + \left[ {0.15} \right]\left[ {0.53631} \right] + [0.2]} \right) = 0.84980 $$
$$ i_{1} = \sigma (W_{i} * x_{1} + U_{i} * {\text{out}}_{0} + b_{i} = \sigma \left( {\left[ {0.95\;\;0.8} \right] \left[ {\begin{array}{*{20}c} {0.5} \\ 3 \\ \end{array} } \right] + \left[ {0.8} \right]\left[ {0.53631} \right] + [0.65]} \right) = 0.98118 $$
$$ f_{1} = \sigma (W_{f} * x_{1} + U_{f} * {\text{out}}_{0} + b_{f} = \sigma \left( {\left[ {0.7\;\;0.45} \right] \left[ {\begin{array}{*{20}c} {0.5} \\ 3 \\ \end{array} } \right] + \left[ {0.1} \right]\left[ {0.53631} \right] + [0.15]} \right) = 0.87030 $$
$$ o_{1} = \sigma (W_{o} * x_{1} + U_{o} * {\text{out}}_{0} + b_{o} = \sigma \left( {\left[ {0.6\;\;0.4} \right] \left[ {\begin{array}{*{20}c} {0.5} \\ 3 \\ \end{array} } \right] + \left[ {0.25} \right]\left[ {0.53631} \right] + [0.1]} \right) = 0.84993 $$
$$ {\text{state}}_{1} = a_{1} * i_{1} + f_{1} * {\text{state}}_{0} = 0.84980 * 0.98118 + 0.87030 * 0.78572 = 1.5176 $$
$$ {\text{out}}_{1} = \tanh \left( {{\text{state}}_{1} } \right) * o_{1} = \tanh \left( {1.5176} \right) * 0.84993 = 0.77197 $$

Backward t = 1

Compute the different between outputs

$$ \partial_{x} E = x - \hat{x} $$

So, \(\Delta_{1} = \partial_{x} E = 0.77197 - 1.25 = - 0.47803\).

\(\Delta {\text{out}}_{1} = 0 \) Because there is no future time – steps

$$ \delta {\text{out}}_{1} = \Delta_{1} + \Delta {\text{out}}_{1} = - 0.47803 + 0 = - 0.47803 $$
$$ \begin{aligned} \delta {\text{state}}_{1} = & \delta {\text{out}}_{1} * o_{1} * \left( {1 - \tanh^{2} \left( {{\text{state}}_{1} } \right)} \right) + \delta {\text{state}}_{2} * f_{2} \\ = & - 0.47803 * 0.84993 * \left( {1 - \tanh^{2} \left( {1.5176} \right)} \right) + 0 * 0 = - 0.07111 \\ \end{aligned} $$
$$ \delta a_{1} = \delta {\text{state}}_{1} * i_{1} * \left( {1 - a_{1}^{2} } \right) = - 0.07111 * 0.98118 * \left( {1 - 0.84680^{2} } \right) = - 0.01938 $$
$$ \delta i_{1} = \delta {\text{state}}_{1} * a_{1} * i_{1} * \left( {1 - i_{1} } \right) = - 0.07111 * 0.84980 * 0.98118 * \left( {1 - 0.98118} \right) = - 0.00631 $$
$$ \delta f_{1} = \delta {\text{state}}_{1} * {\text{state}}_{0} * f_{1} * \left( {1 - f_{1} } \right) = - 0.07111 * 0.78572 * 0.78030 * \left( {1 - 0.78030} \right) = - 0.00631 $$
$$ \delta o_{1} = \delta {\text{out}}_{1} * \tanh ({\text{state}}_{1} ) * o_{1} * \left( {1 - o_{1} } \right) = - 0.47803 * \tanh \left( {1.5176} \right) * 0.84993 * \left( {1 - 0.84993} \right) = - 0.05538 $$
$$ \delta x_{1} = W^{T} * \delta {\text{gates}}_{1} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {0.45} & {0.95} & {\begin{array}{*{20}c} {0.70} & {0.60} \\ \end{array} } \\ \end{array} } \\ {\begin{array}{*{20}c} {0.25} & {0.80} & {\begin{array}{*{20}c} {0.45} & {0.40} \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} { - 0.01938} \\ { - 0.00112} \\ {\begin{array}{*{20}c} { - 0.00631} \\ { - 0.05538} \\ \end{array} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 0.04743} \\ { - 0.03073} \\ \end{array} } \right] $$
$$ \Delta {\text{out}}_{0} = U^{T} * \delta {\text{gates}}_{1} = \left[ {\begin{array}{*{20}c} {0.15} & {0.80} & {\begin{array}{*{20}c} {0.10} & {0.25} \\ \end{array} } \\ \end{array} } \right] \left[ {\begin{array}{*{20}c} { - 0.01938} \\ { - 0.00112} \\ {\begin{array}{*{20}c} { - 0.00631} \\ { - 0.05538} \\ \end{array} } \\ \end{array} } \right] = - 0.01828 $$

At this time need return to back our Δout and forwarding on calculation.

Backward t = 0

$$ \Delta_{0} = \partial_{x} E = 0.53631 - 0.5 = - 0.03631 $$
$$ \Delta {\text{out}}_{1} = - 0.01828,\;\;{\text{passed}}\;{\text{back}}\;{\text{from}}\;T = 1 $$
$$ \delta {\text{out}}_{0} = \Delta_{0} + \Delta {\text{out}}_{0} = 0.03631 + \left( { - 0.01828} \right) = 0.01803 $$
$$ \begin{aligned} \delta {\text{state}}_{0} = & \delta {\text{out}}_{0} * o_{0} * \left( {1 - \tanh^{2} \left( {{\text{state}}_{0} } \right)} \right) + \delta {\text{state}}_{1} * f_{1} \\ = & - 0.01803 * 0.81757 * \left( {1 - \tanh^{2} \left( {0.78572} \right)} \right) + ( - 0.07111 * 0.87030) = - 0.05349 \\ \end{aligned} $$
$$ \delta a_{0} = \delta {\text{state}}_{0} * i_{0} * \left( {1 - a_{0}^{2} } \right) = - 0.05349 * 0.96083 * \left( {1 - 0.81775} \right) = - 0.01703 $$
$$ \delta i_{0} = \delta {\text{state}}_{0} * a_{0} * i_{0} * \left( {1 - i_{0} } \right) = - 0.05349 * 0.81775 * 0.96083 * \left( {1 - 0.96083} \right) = - 0.00165 $$
$$ \delta f_{0} = \delta {\text{state}}_{0} * {\text{state}}_{ - 1} * f_{0} * \left( {1 - f_{0} } \right) = - 0.05349 * 0 * 0.85195 * \left( {1 - 0.85195} \right) = 0 $$
$$ \delta o_{0} = \delta {\text{out}}_{0} * \tanh ({\text{state}}_{0} ) * o_{0} * \left( {1 - o_{0} } \right) = 0.01803 * \tanh \left( {0.78572} \right) * 0.81757 * \left( {1 - 0.81757} \right) = 0.00176 $$
$$ \delta x_{0} = W^{T} * \delta {\text{gates}}_{0} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {0.45} & {0.95} & {\begin{array}{*{20}c} {0.70} & {0.60} \\ \end{array} } \\ \end{array} } \\ {\begin{array}{*{20}c} {0.25} & {0.80} & {\begin{array}{*{20}c} {0.45} & {0.40} \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} { - 0.01703} \\ { - 0.00165} \\ {\begin{array}{*{20}c} 0 \\ {0.00176} \\ \end{array} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 0.00817} \\ { - 0.00487} \\ \end{array} } \right] $$
$$ \Delta {\text{out}}_{ - 1} = U^{T} * \delta {\text{gates}}_{1} = \left[ {\begin{array}{*{20}c} {0.15} & {0.80} & {\begin{array}{*{20}c} {0.10} & {0.25} \\ \end{array} } \\ \end{array} } \right] \left[ {\begin{array}{*{20}c} { - 0.01703} \\ { - 0.00165} \\ {\begin{array}{*{20}c} 0 \\ {0.00176} \\ \end{array} } \\ \end{array} } \right] = - 0.00343 $$

After complete backward, let λ = 0.1 and update the parameters by:

$$ \begin{aligned} \delta W = & \mathop \sum \limits_{t = 0}^{T} \delta {\text{gates}}_{t} \otimes X_{t} \\ = & \left[ {\begin{array}{*{20}c} { - 0.01703} \\ { - 0.00165} \\ {\begin{array}{*{20}c} 0 \\ {0.00176} \\ \end{array} } \\ \end{array} } \right] \left[ {1.0 2.0} \right] + \left[ {\begin{array}{*{20}c} { - 0.01938} \\ { - 0.00112} \\ {\begin{array}{*{20}c} { - 0.00631} \\ { - 0.05538} \\ \end{array} } \\ \end{array} } \right]\left[ {0.5 3.0} \right] \\ = & \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - 0.02672} \\ { - 0.00221} \\ {\begin{array}{*{20}c} { - 0.00316} \\ { - 0.02593} \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} { - 0.0922} \\ { - 0.00666} \\ {\begin{array}{*{20}c} { - 0.01893} \\ { - 0.16262} \\ \end{array} } \\ \end{array} } \\ \end{array} } \right] \\ \end{aligned} $$
$$ \delta U = \mathop \sum \limits_{t = 0}^{T} \delta {\text{gates}}_{t + 1} \otimes {\text{out}}_{t} = \left[ {\begin{array}{*{20}c} { - 0.01938} \\ { - 0.00112} \\ {\begin{array}{*{20}c} { - 0.00631} \\ { - 0.05538} \\ \end{array} } \\ \end{array} } \right] \left[ {0.53631} \right] = \left[ {\begin{array}{*{20}c} { - 0.01039} \\ { - 0.00060} \\ {\begin{array}{*{20}c} { - 0.00338} \\ { - 0.02970} \\ \end{array} } \\ \end{array} } \right] $$
$$ \delta b = \mathop \sum \limits_{t = 0}^{T} \delta {\text{gates}}_{t + 1} = \left[ {\begin{array}{*{20}c} { - 0.01703} \\ { - 0.00165} \\ {\begin{array}{*{20}c} 0 \\ {0.00176} \\ \end{array} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} { - 0.01938} \\ { - 0.00112} \\ {\begin{array}{*{20}c} { - 0.00631} \\ { - 0.05538} \\ \end{array} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 0.03641} \\ { - 0.00277} \\ {\begin{array}{*{20}c} { - 0.00631} \\ { - 0.05362} \\ \end{array} } \\ \end{array} } \right] $$

Depend on the SGD updating out parameters:

$$ W^{{{\text{new}}}} = W^{{{\text{old}}}} - \lambda * \delta W^{{{\text{old}}}} $$

\(W_{a} = \left[ {\begin{array}{*{20}c} {0.45267} \\ {0.25922} \\ \end{array} } \right],\;\;U_{a} = \left[ {0.15104} \right],\;\; b_{a} = [0.20364\)].

\(W_{i} = \left[ {\begin{array}{*{20}c} {0.95022} \\ {0.80067} \\ \end{array} } \right],\;\;U_{i} = \left[ {0.80006} \right],\;\;b_{i} = [0.65028\)]

$$ W_{f} = \left[ {\begin{array}{*{20}c} {0.70031} \\ {0.45189} \\ \end{array} } \right],\;\;U_{f} = \left[ {0.10034} \right],\;\;b_{f} = \left[ {0.15063} \right] $$
$$ W_{o} = \left[ {\begin{array}{*{20}c} {0.60259} \\ {0.41626} \\ \end{array} } \right],\;\;U_{o} = \left[ {0.25297} \right],\;\;b_{o} = \left[ {0.10536} \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Janabi, S., Alkaim, A., Al-Janabi, E. et al. Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP). Neural Comput & Applic 33, 14199–14229 (2021). https://doi.org/10.1007/s00521-021-06067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06067-7

Keywords

Navigation