Skip to main content

Advertisement

Log in

GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Segmentation of biomedical images is the method of semiautomatic and automatic detection of boundaries within 2D and 3D images. The major challenge of medical image segmentation is the high variability of shape, location, size and texture of the medical images. Manual segmentation is a time-consuming and monotonous process; therefore, a fully automated segmentation process is highly desirable. UNet is deployed as one of the most popular and generic architectures for medical image segmentation. This paper proposes and deploys two variants based on UNet architecture, namely 2DGA-UNet and 3DGA-UNet for the segmentation of 2D and 3D medical images, respectively. The first variant increases the impact of the 2DGA-UNet framework performance by applying transfer learning with the UNet architecture. We use simple convolutional neural networks from the VGG family known as VGG 16 as an encoder in the 2DGA-UNet network. The critical concept of 3DGA-UNet is to supplement a comprehensive contracting network by successive layers, where upsampling operators replace pooling operators. Such layers, therefore, improve the resolution of the output and further be trained end-to-end from very few images, outperforming the state-of-the-art methods. The proposed models are evaluated for 2D and 3D medical images on five benchmark datasets including brain tumor segmentation (BRATS 2018 and BRATS 2019), brain lesion segmentation (MICCAI 2008 multiple sclerosis challenge), lung segmentation (NIH tuberculosis chest X-ray dataset, Shenzhen No. 3 Hospital X-ray set, RSNA pneumonia detection challenge), liver segmentation (3D-IRCADb-01 database). The comprehensive results show remarkable performance considering 14 different evaluation parameters for the segmentation of medical images. Besides, the GA-UNet outperforms traditional methods in terms of ACC, i.e., 97.0% and the DSC of 91.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Liu X, Guo S, Yang B, Ma S, Zhang H, Li J, Sun C, Jin L, Li X, Yang Q, Fu Y (2018) Automatic organ segmentation for CT scans based on super-pixel and convolutional neural networks. J Digit Imaging 31:748–760. https://doi.org/10.1007/s10278-018-0052-4

    Article  Google Scholar 

  2. Cheng J, Liu J, Xu Y, Yin F, Wong DWK, Tan NM, Tao CY, Aung CT, Wong TY (2013) Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging 32(6):1019–1032

    Article  Google Scholar 

  3. Fu H, Cheng J, Xu Y, Wong D, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37:1597–1605

    Article  Google Scholar 

  4. Aquino A, Gegúndez-Arias ME, Marín D (2010) Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging 29(11):1860–1869

    Article  Google Scholar 

  5. Makropoulos A, Gousias IS, Ledig C, Aljabar P, Serag A, Hajnal JV, Edwards AD, Counsell SJ, Rueckert D (2014) Automatic whole brain mri segmentation of the developing neonatal brain. IEEE Trans Med Imaging 33(9):1818–1831

    Article  Google Scholar 

  6. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  7. Cherukuri V, Ssenyonga P, Warf BC, Kulkarni AV, Monga V, Schiff SJ (2018) Learning based segmentation of CT brain images: application to postoperative hydrocephalic scans. IEEE Trans Biomed Eng 65(8):1871–1884

    Article  Google Scholar 

  8. Huang M, Yang W, Wu Y, Jiang J, Chen W, Feng Q (2014) Brain tumor segmentation based on local independent projection-based classification. IEEE Trans Biomed Eng 61(10):2633–2645

    Article  Google Scholar 

  9. Kumar S, Conjeti S, Roy AG, Wachinger C, Navab N (2018) Infinet: fully convolutional networks for infant brain mri segmentation. In: 15th international symposium on biomedical imaging (ISBI). IEEE, pp 145–148

  10. Chen W, Smith R, Ji SY, Ward KR, Najarian K (2009) Automated ventricular systems segmentation in brain ct images by combining low level segmentation and high-level template matching. BMC Med Inform Decis Mak 9(1):1–14

    Article  Google Scholar 

  11. Wang S, Zhou M, Liu Z, Gu D, Zang Y, Dong D, Gevaert O, Tian J (2017) Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal 40:172–183

    Article  Google Scholar 

  12. Al-Kofahi Y, Lassoued W, Lee W, Roysam B (2010) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841–852

    Article  Google Scholar 

  13. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

  14. Song T-H, Sanchez V, EIDaly H, Rajpoot NM (2017) Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images. IEEE Trans Biomed Eng 64(12):2913–2923

    Article  Google Scholar 

  15. Fu M, Wu W, Hong X, Liu Q, Jiang J, Ou Y, Zhao Y, Gong X (2018) Hierarchical combinatorial deep learning architecture for pancreas segmentation of medical computed tomography cancer images. BMC SystBiol 12(4):56

    Google Scholar 

  16. Roth H, Lu L, Farag A, Shin H, Liu J, Turkbey E, Summers R (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 556–564

  17. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337

    Article  Google Scholar 

  18. Mesejo P, Valsecchi A, Marrakchi-Kacem L, Cagnoni S, Damas S (2015) Biomedical image segmentation using geometric deformable models and metaheuristics. Comput Med Imaging Graph 43:167–178

    Article  Google Scholar 

  19. Kamnitsas K, Bai W, Ferrante E, McDonagh SG, Sinclair M, Pawlowski N, Rajchl M, Lee M, Kainz B, Rueckert D, Glocker B (2017) Ensembles of multiple models and architectures for robust brain tumour segmentation. In: International conference on medical image computing and computer assisted intervention. Multimodal brain tumor segmentation challenge (MICCAI). LNCS

  20. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

    Article  Google Scholar 

  21. Krizhevsky A, Sutskever I, Hinton GE (2012) Image net classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  22. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2324

    Article  Google Scholar 

  23. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv preprint, arXiv:1409.1556v6

  24. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition, pp 1–9

  25. Long J, Shelhammer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. arXiv preprint, arXiv:1411.4038v2 [cs.CV]

  26. Kim J, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, pp 1646–1654. https://doi.org/10.1109/CVPR.2016.182

  27. Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS

  28. Milletari F, Navab N, Ahmadi S A (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. arXiv preprint, arXiv:1606.04797v1 [cs.CV]

  29. Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D UNet: Learning dense volumetric segmentation from sparse annotation. In: International conference on medical image computing and computer assisted intervention (Athens), pp 424–432

  30. Kamnitsas K, Ledig C, Newcombe V, Simpson J, Kane A, Menon D, Rueckert D (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78. https://doi.org/10.1016/j.media.2016.10.004

    Article  Google Scholar 

  31. Havaei M, Davy A, Warde-Farley D (2016) Brain tumor segmentation with deep neural networks. arXiv preprint, arXiv:1505.03540v3 [cs.CV]

  32. Zeiler MD, Fergus R (2014) Visualising and understanding convolutional networks. European conference on computer vision. Springer, pp 818–833

  33. Simonyan K, Zisserman A (2015) A very deep convolutional networks for large scale image recognition. arXiv preprint, arXiv:1409-1556

  34. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: European conference on computer vision. Springer, pp 630–645

  35. Huang G, Liu Z, Van Der Maaten L, Weinberger K Q (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  36. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  37. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  38. Zhou T, Ruan S, Canu S (2019) A review: deep learning for medical image segmentation using multi-modality fusion. Array. https://doi.org/10.1016/j.array.2019.100004

    Article  Google Scholar 

  39. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  40. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Laak JAWMV, Ginneken BV, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  41. Lin, Bill S, Michael, Kevin, Kalra, Shivam, Tizhoosh, Hamid R (2017). Skin lesion segmentation: U-nets versus clustering. In: 2017 IEEE symposium series on computational intelligence (SSCI). Springer, pp 1–7

  42. Birenbaum A, Greenspay H (2017) Multiview longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell 65:111–118

    Article  Google Scholar 

  43. Jameson M, Alison M, David K, Zhuowen T (2016). Dense volume-to-volume vascular boundary detection. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 371–379

  44. Setio AA, Traverso A, Bel T, Berens MS, Bogaard CV, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B, Gugten RV, Heng P, Jansen B, Kaste M, Kotov V, Lin J, Manders J, Sónora-Mengana A, García-Naranjo JC, Prokop M, Saletta M, Schaefer-Prokop C, Scholten ET, Scholten L, Snoeren M, Torres E, Vandemeulebroucke J, Walasek N, Zuidhof GC, Ginneken B, Jacobs C (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med Image Anal 42:1–13

    Article  Google Scholar 

  45. Sirinukunwattana K, Pluim J, Chen H, Qi X, Heng P, Guo Y, Wang L, Matuszewski B, Bruni E, Sanchez U, Böhm A, Ronneberger O, Cheikh BB, Racoceanu D, Kainz P, Pfeiffer M, Urschler M, Snead D, Rajpoot N (2017) Gland segmentation in colon histology images: the glas challenge contest. Med Image Anal 35:489–502

    Article  Google Scholar 

  46. Zhou Y, Huang W, Dong P, Xia Y, Wang S (2019) D-UNet: a dimension-fusion U shape network for chronic stroke lesion segmentation. In: IEEE/ACM Transactions on computational biology and bioinformatics

  47. Christ P, Elshaer M, Ettlinger F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Armbruster M, Hofmann F, D'Anastasi M, Sommer W, Ahmadi S, Menze B (2016) Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. MICCAI

  48. Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, Zhang T, Gao S, Liu J (2019) CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging 38:2281–2292

    Article  Google Scholar 

  49. Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI

  50. Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically nested networks for automated pancreas segmentation. In: MICCAI

  51. Havaei M, Davy A, Warde-Farley D, Biard A, Courville AC, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain tumor segmentation with deep neural networks. MIA 35:18–31

    Google Scholar 

  52. Moeskops P, Wolterink JM, vander Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Isgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. CoRRabs/1704.03379

  53. Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL (2018) Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. CoRR abs/1804.08414

  54. Wang Y, Zhou Y, Tang P, Shen W, Fishman EK, Yuille A (2018) Training multi-organ segmentation networks with sample selection by relaxed upper confident bound. In: Proceedings of MICCAI, pp434–442

  55. Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016) Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35:1229–1239. https://doi.org/10.1109/TMI.2016.2528821

    Article  Google Scholar 

  56. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563

    Article  Google Scholar 

  57. Dolz J, Massoptier L, Vermandel M (2015) Segmentation algorithms of subcortical brain structures on MRI for radiotherapy and radiosurgery: a survey. IRBM 36(4):200–212

    Article  Google Scholar 

  58. Sinha A, Dolz J (2020) Multi-scale self-guided attention for medical image segmentation. arXiv preprint, arXiv:1906.02849v3

  59. Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí X, Lladóo R (2019) Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med 95:64–81

    Article  Google Scholar 

  60. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  61. Alom M, Hasan M, Yakopcic C, Taha T, Asari V (2018) Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv preprint, arXiv:1802.06955 [cs.CV]

  62. Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PH (2015) Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE international conference on computer vision, pp 1529–1537

  63. Wang G, Li W, Ourselin S, Vercauteren T (2017) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: International conference on medical image computing and computer assisted intervention. Multimodal brain tumor segmentation challenge (MICCAI). LNCS

  64. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2018) No newnet. In: International conference on medical image computing and computer assisted intervention (MICCAI 2018). Multimodal brain tumor segmentation challenge (BRATS 2018). BrainLes 2018 workshop. LNCS, Springer

  65. McKinley R, Meier R, Wiest R (2018) Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: International conference on medical image computing and computer-assisted intervention (MICCAI)

  66. Huang G, Liu Z, van der Maaten, L Weinberger, K Q (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2261–2269

  67. Shakeri M, Tsogkas S, Ferrante E, Lippe S, Kadoury S, Paragios N, Kokkinos I (2016) Sub-cortical brain structure segmentation using FCNN's. In: International symposium on biomedical imaging, pp 269–272

  68. Andermatt S, Pezold S, Cattin P (2016) Multi-dimensional gated recurrent units for the segmentation of biomedical 3D-data. In: Deep learning and data labeling for medical applications. Springer, pp 142–151

  69. Oktay O, Schlemper J, Folgoc LL, Lee MJ, Heinrich M, Misawa K, Mori K, McDonagh SG, Hammerla N, Kainz B, Glocker B, Rueckert D (2018) Attention U-Net: learning where to look for the pancreas. arXiv preprint, arXiv:1804.03999 [cs.CV]

  70. Kaluva KC, Khened M, Kori A, Krishnamurthi G (2018) 2D-Densely connected convolution neural networks for automatic liver and tumor segmentation. arXiv preprint, arXiv:1802.02182

  71. Li X, Chen H, Qi X, Dou Q, Fu C, Heng P (2018) H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT Volumes. IEEE Trans Med Imaging 37:2663–2674

    Article  Google Scholar 

  72. Sevastopolsky A (2017) Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network. Pattern Recognit Image Anal 27(3):618–624

    Article  Google Scholar 

  73. Roy AG, Conjeti S, Karri SPK, Sheet D, Katouzian A, Wachinger C, Navab N (2017) Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express 8(8):3627–3642

    Article  Google Scholar 

  74. Norman B, Pedoia V, Majumdar S (2018) Use of 2d u-net convolutional neural networks for automated cartilage and meniscus segmentation of knee mr imaging data to determine relaxometry and morphometry. Radiology 288:177–185

    Article  Google Scholar 

  75. Skourt BA, El HA, Majda A (2018) Lung ct image segmentation using deep neural networks. Proc Comput Sci 127:109–113

    Article  Google Scholar 

  76. Pasa F, Golkov V, Pfeiffer F, Cremers D, Pfeiffer D (2019) Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Sci Rep 9(1):6268. https://doi.org/10.1038/s41598-019-42557-4

    Article  Google Scholar 

  77. Sathitratanacheewin S, Sunanta P, Pongpirul K (2020) Deep learning for automated classification of tuberculosis-related chest x-ray: dataset distribution shift limits diagnostic performance generalizability. Heliyon 6(8):e04614

    Article  Google Scholar 

  78. Islam J, Zhang Y (2018) Towards robust lung segmentation in chest radiographs with deep learning. arXiv preprint, arXiv:1811.12638 [cs.CV]

  79. Cui S, Mao L, Jiang J, Liu C, Xiong S (2018) Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J Healthc Eng. https://doi.org/10.1155/2018/4940593

    Article  Google Scholar 

  80. El-Sherbiny B, Nabil N, El-Naby S H, Emad Y, Ayman N, Mohiy T, AbdelRaouf A (2018) BLB (Brain/Lung cancer detection and segmentation and Breast Dense calculation). In: First International Workshop on Deep and Representation Learning (IWDRL), pp 41–47. Cairo. https://doi.org/10.1109/IWDRL.2018.8358213

  81. Amin J, Sharif M, Anjum MA, Raza M, Bukhari SA (2020) Convolutional neural network with batch normalisation for glioma and stroke lesion detection using MRI. Cogn Syst Res 59:304–311

    Article  Google Scholar 

  82. Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. https://doi.org/10.1148/radiol.2017162326

    Article  Google Scholar 

  83. Myronenko A (2019) 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2018. Lecture notes in computer science, vol 11384. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_28

  84. Valverde S, Salem M, Cabezas M, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira A, Salvi J, Oliver A, Lladó X (2019) One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. Neuroimage Clin 21:101638. https://doi.org/10.1016/j.nicl.2018.101638

    Article  Google Scholar 

  85. Xue Y, Xie M, Farhat FG, Boukrina O, Barrett AM, Binder, Usman WR (2020) A multi-path decoder network for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2019. Lecture notes in computer science 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_25

  86. Almotairi S, Kareem G, Aouf M, Almutairi B, Salem MA (2020) Liver tumor segmentation in CT scans using modified SegNet. Sensors (Basel, Switzerland) 20(5):1516. https://doi.org/10.3390/s20051516

    Article  Google Scholar 

  87. Christ P, Ettlinger F, Grün F, Elshaer M, Lipková J, Schlecht S, Ahmaddy F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Hofmann F, D'Anastasi M, Ahmadi S, Kaissis G, Holch J, Sommer W, Braren R, Heinemann V, Menze B (2017) Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint, arXiv:1702.05970 [cs.CV]

  88. Jameson M (2018) Pneumonia detection in chest radiographs. arXiv preprint, arXiv:1811.08939

  89. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9:611–629. https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  90. Dhillon A, Verma G (2019) Convolutional neural network: a review of models, methodologies and applications to object detection. Progress Artif Intell 9:85–112

    Article  Google Scholar 

  91. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E (2019) Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 290(3):590–606. https://doi.org/10.1148/radiol.2018180547

    Article  Google Scholar 

  92. Iglovikov V, Shvets A (2018) TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation. arXiv preprint, arXiv:1801.05746

  93. Malla CUP, Hernandez MDCV, Rachmadi MF, Komura T (2019) Evaluation of enhanced learning techniques for segmenting ischaemic stroke lesions in brain magnetic resonance perfusion images using a convolutional neural network scheme. Front Neuroinform 13(33):1–16

    Google Scholar 

  94. Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers, RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI

  95. Aquino A, Gegundez-Arias ME, Marin D (2010) Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging 29(11):1860–1869

    Article  Google Scholar 

  96. Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically nested networks for automated pancreas segmentation. In: MICCAI

  97. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. Int Conf Learn Represent. https://doi.org/10.1016/j.infsof.2008.09.005

    Article  Google Scholar 

  98. Available at https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5

  99. Ibtehaz N, Rahman MS (2019) MultiResUnet: rethinking the U-Net architecture for multimodal biomedical image segmentation. arXiv:1902.04049v1

  100. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Nat Sci Data 4:170117

    Article  Google Scholar 

  101. Russakovsky O, Deng V, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg A, Fei-Fei Li (2014) ImageNet large scale visual recognition challenge. arXiv preprint, arXiv:1409.0575

  102. Wang G, Li W, Ourselin S, Vercauteren T (2019) Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front Comput Neurosci 13:56. https://doi.org/10.3389/fncom.2019.00056

    Article  Google Scholar 

  103. Chen W, Liu B, Peng S, Sun J, Qiao X (2018) S3D-UNet: separable 3D U-Net for brain tumor segmentation. BrainLes@MICCAI

  104. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  105. Ben Naceur M, Akil M, Saouli R, Kachouri R (2020) Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy. Med Image Anal 63:101692. https://doi.org/10.1016/j.media.2020.101692

    Article  Google Scholar 

  106. Mlynarski P, Delingette H, Criminisi A, Ayache N (2019) 3d convolutional neural networks for tumor segmentation using long-range 2d context. Comput Med Imaging Graph 73:60–72

    Article  Google Scholar 

  107. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating fcnns and crfs for brain tumor segmentation. Med Image Anal 43:98–111

    Article  Google Scholar 

  108. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  Google Scholar 

  109. Ellwaa A, Hussein A, AlNaggar E, Zidan M, Zaki M, Ismail MA, Ghanem NM (2016) Brain tumor segmantation using random forest trained on iteratively selected patients. In International workshop on Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, pp 129–137. Springer

  110. Ben Naceur M, Saouli R, Akil M, Kachouri R (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in mri images. Compu Methods Prog Biomed 166:39–49

    Article  Google Scholar 

  111. Fu J, Liu J, Tian H, Fang Z, Lu H (2019) Dual attention network for scene segmentation. IEEE/CVF Conf Comput Vis Pattern Recogn (CVPR) 2019:3141–3149

    Google Scholar 

  112. Li H, Xiong P, An J, Wang L (2018) Pyramid attention network for semantic segmentation. In: BMVC. arXiv preprint, arXiv:1805.10180

  113. Wang Y, Dou H, Hu X, Zhu L, Yang X, Xu M, Qin J, Heng PA, Wang T, Ni D (2019) Deep attentive features for prostate segmentation in 3D transrectal ultrasound. IEEE Trans Med Imaging 38(12):2768–2778. https://doi.org/10.1109/TMI.2019.2913184

    Article  Google Scholar 

  114. Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D (2019) Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 53:197–207

    Article  Google Scholar 

  115. Hamghalam M, Lei B, Wang T (2020) Brain tumor synthetic segmentation in 3D multimodal MRI scans. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2019. Lecture notes in computer science, vol. 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_15

  116. Li X, Luo G, Wang K (2020) Multi-step cascaded networks for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2019. Lecture notes in computer science, vol. 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_16

  117. Jiang Z, Ding C, Liu M, Tao D (2020) Two-stage cascaded U-Net: 1st place solution to BRATS challenge 2019 segmentation task. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2019. Lecture notes in computer science, vol. 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_22

  118. Xue Y, Xie M, Farhat FG, Boukrina O, Barrett AM, Binder JR, Roshan UW (2020) A multi-path decoder network for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2019. Lecture notes in computer science, vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_25

  119. Dhillon A, Singh A (2018) Machine Learning in Healthcare Data Analysis: A Survey. J Biol Today’s World 8(2):1–10

    Google Scholar 

  120. Singh G, Singh A (2018) Object detection in fog degraded images. Int J Comput Sci Inform Secur 15(8):174–182

    Google Scholar 

  121. Kaur P, Sharma N, Singh A, Gill B (2018) CI-DPF: a cloud iot based framework for diabetes prediction. In: IEEE 9th annual information technology. Electronics and mobile communication conference (IEMCON) (IEEE)

  122. Sharma N, Singh A (2019) Diabetes detection and prediction using machine learning/IoT: a survey. In: Advanced informatics for computing research. ICAICR communications in computer and information science, vol 955, pp 471–479

  123. Singh G, Singh A (2019) Enhancement methods for low visibility and fog degraded images. In: Advanced informatics for computing research. ICAICR 2018. Communications in Computer and Information Science, vol 955, pp 489–498

  124. Dhillon A, Singh A, Vohra H, Ellis C, Varghese B, Gill SS (2020) IoTPulse: machine learning based enterprise information system to predict alcohol addiction in Punjab (India) using IoT and fog computing. Enterprise Information System

  125. Singh A, Dhillon A, Kumar N (2020) eDiaPredict: an ensemble based framework for diabetes prediction. ACM Trans Multimed Comput Commun Appl

  126. Chauhan A, Chauhan D, Rout C (2014) Role of GIST and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PLoS ONE 9:e112980

    Article  Google Scholar 

  127. Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z, Karargyris A, Antani S, Thoma G, McDonald CJ (2014) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33(2):577–590

    Article  Google Scholar 

  128. Kalinovsky A, Kovalev V (2016) Lung image segmentation using deep learning methods and convolutional neural networks. In: XIII international conference on pattern recognition and information processing

  129. Rashid R, Akram MU, Hassan T (2018) Fully convolutional neural network for lung segmentation from chest X-rays. In: International conference image analysis and recognition. Springer, Cham, pp 71–80

  130. Islam J, Zhang Y (2018) Towards robust lung segmentation in chest radiographs with deep learning. arXiv preprint, arXiv:1811.12638 [cs.CV]

  131. Pasa F, Golkov V, Pfeiffer F, Cremers D, Pfeiffer D (2019) Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Sci Rep 9:6268. https://doi.org/10.1038/s41598-019-42557-4

    Article  Google Scholar 

  132. Hwang S, Kim H, Jeong J, Kim H (2016) A novel approach for tuberculosis screening based on deep convolutional neural networks. Proc SPIE 9785:1–8

    Google Scholar 

  133. Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, Xue Z, Palaniappan K, Singh RK, Antani S, Thoma G, Wang YX, Lu PX, McDonald CJ (2013) Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 33:233–245

    Article  Google Scholar 

  134. Chlebus G, Meine H, Moltz JH, Schenk A (2017) Neural network-Based automatic liver tumor segmentation with random forest-Based candidate filtering. arXiv preprint, arXiv:1706.00842

  135. Christ P, Elshaer M, Ettlinger F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Armbruster M, Hofmann F, D'Anastasi M, Sommer W, Ahmadi S, Menze B (2016) Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. arXiv preprint, arXiv:1610.02177

  136. Yang D, Xu D, Zhou SK, Georgescu B, Chen M, Grbic S, Metaxas DN, Comaniciu D (2017) Automatic liver segmentation using an adversarial image-To-Image network. arXiv preprint, arXiv:1707.08037

  137. Bi L, Kim J, Kumar A, Feng D (2017) Automatic liver lesion detection using cascaded deep residual networks. arXiv preprint, arXiv:1704.02703

  138. Ke Q, Zhang J, Wei W, Połap D, Wozniak M, Kosmider L, Damaševıcius R (2019) A neuro-Heuristic approach for recognition of lung diseases from X-Ray images. Expert Syst 126:218–232

    Article  Google Scholar 

  139. Yuan Y (2017) Hierarchical convolutional–deconvolutional neural networks for automatic liver and tumor segmentation. arXiv preprint, arXiv:1710.04540

  140. Li W, Jia F, Hu Q (2015) Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. J Comput Commun 3:146–151

    Article  Google Scholar 

  141. Almotairi S, Kareem G, Aouf M, Almutairi B, Salem MAM (2020) Liver tumor segmentation in CT Scans using modified SegNet. Sensors (Basel) 20(5):1516. https://doi.org/10.3390/s20051516

    Article  Google Scholar 

  142. Moghbel M, Mashohor S, Mahmud R, Saripan MIB (2016) Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring. EXCLI J 15:406–423

    Google Scholar 

  143. Foruzan AH, Chen YW (2016) Improved segmentation of low-contrast lesions using sigmoid edge model. Int J Comput Assist Radiol Surg 11(7):1267–1283

    Article  Google Scholar 

  144. Wu W, Wu S, Zhou Z, Zhang R, Zhang Y (2017). 3D liver tumor segmentation in CT images using improved fuzzy C-means and graph cuts. BioMed Research International, 2017

  145. Christ P, Ettlinger F, Grün F, Elshaer M, Lipková J, Schlecht S, Ahmaddy F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Hofmann F, DAnastasi M, Ahmadi S, Kaissis G, Holch J, Sommer W, Braren R, Heinemann V, Menze B (2017). Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint, arXiv:1702.05970 [cs.CV]

  146. Souplet JC, Lebrun C, Ayache N, Malandain G (2008) An automatic segmentation of T2-FLAIR multiple sclerosis lesions. In: Multiple sclerosis lesion segmentation challenge workshop (MICCAI-2008), New York, NY, USA, pp 1–8

  147. Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N (2011) Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 57(2):378–390

    Article  Google Scholar 

  148. Jesson A, Arbel T (2015) Hierarchical MRF and random forest segmentation of MS lesions and healthy tissues in brain MRI

  149. Guizard N, Coupe P, Fonov VS, Manjon JV, Arnold DL, Collins DL (2015) Rotation-invariant multicontrast non-local means for MS lesion segmentation. NeuroImage Clin 8:376–389

    Article  Google Scholar 

  150. Tomas-Fernandez X, Warfield SK (2015) A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 34(6):1349–1361

    Article  Google Scholar 

  151. Jerman T, Galimzianova A, Pernus F, Lik B, Spiclin Z (2015) Combining unsupervised and supervised methods for lesion segmentation. In: Proceedings the MICCAI 2015 brain lesions workshop, pp 1–12

  152. Brosch T, Lisa YW, Yoo TY, Li DKB, Traboulsee A, Tam R (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2016.2528821

    Article  Google Scholar 

  153. Geremia E, Menze B H, Clatz O, Konukoglu E, Criminisi A, and Ayache N (2010) Spatial decision forests for MS lesion segmentation in multi-channel MR images. In: Jian T, Navab N, Pluim J, Viergever M (eds) MICCAI 2010, Part I. LNCS, vol 6362, pp 111–118. Springer, Heidelberg

  154. Shiee N, Bazin PL, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49(2):1524–1535

    Article  Google Scholar 

  155. Weiss N, Rueckert D, Rao A (2013) Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) MICCAI 2013, Part I. LNCS, vol 8149, pp 735–742. Springer, Heidelberg

  156. Roura E, Oliver A, Cabezas M, Valverde S, Pareto D, Vilanova JC, Ramio-Torrenta L, Rovira A, Llado X (2013) A toolbox for multiple sclerosis lesion segmentation. Neuroradiology 57(10):1031–1043

    Article  Google Scholar 

  157. Kaur A, Kaur L, Singh A (2020) State-of-the-art segmentation techniques and future directions for multiple sclerosis brain lesions. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09403-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure c

(A) The GA-UNet architecture for IRCAD dataset.

figure d

(B) The GA-UNet architecture for Lungs dataset.

figure e

(C) The GA-UNet architecture for MICCAI dataset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Kaur, L. & Singh, A. GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets. Neural Comput & Applic 33, 14991–15025 (2021). https://doi.org/10.1007/s00521-021-06134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06134-z

Keywords

Navigation