Skip to main content

Advertisement

Log in

Transfer learning-based deep CNN model for multiple faults detection in SCIM

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Deep learning-based fault detection approach for squirrel cage induction motors (SCIMs) fault detection can provide a reliable solution to the industries. This paper encapsulates the idea of transfer learning-based knowledge transfer approach and deep convolutional neural network (dCNN) to develop a novel fault detection framework for multiple and simultaneous fault detection in SCIM. In comparison with the existing techniques, transfer learning-based deep CNN (TL-dCNN) method facilitates faster training and higher accuracy. The current signals acquired with the help of hall sensors and converted to an image for input to the TL-dCNN model. This approach provides autonomous learning of features and decision-making with minimum human intervention. The developed method is also compared to the existing state-of-the-art techniques, and it outperforms them and has an accuracy of 99.40%. The dataset for the TL-dCNN model is generated from the experimental setup and programming is done in python with the help of Keras and TensorFlow packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Banerjee TP, Das S (2012) Multi-sensor data fusion using support vector machine for motor fault detection. Inf Sci 217:96–107

    Article  Google Scholar 

  2. Chen Z, Li W (2017) Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE Trans Instrum Meas 66(7):1693–1702

    Article  Google Scholar 

  3. Choudhary A, Goyal D, Shimi SL, Akula A (2019) Condition monitoring and fault diagnosis of induction motors: a review. Arch Comput Methods Eng 26(4):1221–1238

    Article  Google Scholar 

  4. Di Lena P, Nagata K, Baldi P (2012) Deep architectures for protein contact map prediction. Bioinformatics 28(19):2449–2457

    Article  Google Scholar 

  5. Ding X, He Q (2017) Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis. IEEE Trans Instrum Meas 66(8):1926–1935

    Article  Google Scholar 

  6. Eren L, Devaney MJ (2004) Bearing damage detection via wavelet packet decomposition of the stator current. IEEE Trans Instrum Meas 53(2):431–436

    Article  Google Scholar 

  7. Glowacz A, Glowacz Z (2017) Diagnosis of stator faults of the single-phase induction motor using acoustic signals. Appl Acoust 117:20–27

    Article  Google Scholar 

  8. Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645–6649. IEEE

  9. Henao H, Capolino G, Manes F (2013) Trends in fault diagnosis for electrical machines: a review of diagnostic techniques. IEEE Ind Electron Mag 8(2):31–42

    Article  Google Scholar 

  10. Hoang DT, Kang HJ (2017) Convolutional neural network based bearing fault diagnosis. In: International conference on intelligent computing. Springer, pp 105–111

  11. Hwang YR, Jen KK, Shen YT (2009) Application of cepstrum and neural network to bearing fault detection. J Mech Sci Technol 23(10):2730

    Article  Google Scholar 

  12. Ince T, Kiranyaz S, Eren L, Askar M, Gabbouj M (2016) Real-time motor fault detection by 1-d convolutional neural networks. IEEE Trans Industr Electron 63(11):7067–7075

    Article  Google Scholar 

  13. Kande M, Isaksson AJ, Thottappillil R, Taylor N (2017) Rotating electrical machine condition monitoring automation—a review. Machines 5(4):24

    Article  Google Scholar 

  14. Kang M, Kim J, Kim JM, Tan AC, Kim EY, Choi BK (2014) Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis. IEEE Trans Power Electron 30(5):2786–2797

    Article  Google Scholar 

  15. Kankar PK, Sharma SC, Harsha SP (2011) Fault diagnosis of ball bearings using machine learning methods. Expert Syst Appl 38(3):1876–1886

    Article  Google Scholar 

  16. Khan S, Yairi T (2018) A review on the application of deep learning in system health management. Mech Syst Signal Process 107:241–265

    Article  Google Scholar 

  17. Kliman GB, Premerlani WJ, Yazici B, Koegl RA, Mazereeuw J (1997) Sensorless, online motor diagnostics. IEEE Comput Appl Power 10(2):39–43

    Article  Google Scholar 

  18. Konar P, Chattopadhyay P (2011) Bearing fault detection of induction motor using wavelet and support vector machines (SVMS). Appl Soft Comput 11(6):4203–4211

    Article  Google Scholar 

  19. Kral C, Habetler TG, Harley RG (2004) Detection of mechanical imbalances of induction machines without spectral analysis of time-domain signals. IEEE Trans Ind Appl 40(4):1101–1106

    Article  Google Scholar 

  20. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  21. Kumar P, Hati AS (2020) Review on machine learning algorithm based fault detection in induction motors. Arch Comput Methods Eng, pp 1–12

  22. Li X, Zhang X, Li C, Zhang L et al (2013) Rolling element bearing fault detection using support vector machine with improved ant colony optimization. Measurement 46(8):2726–2734

    Article  Google Scholar 

  23. Nandi S, Toliyat HA, Li X (2005) Condition monitoring and fault diagnosis of electrical motors-a review. IEEE Trans Energy Convers 20(4):719–729

    Article  Google Scholar 

  24. Oh H, Jung JH, Jeon BC, Youn BD (2017) Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis. IEEE Trans Industr Electron 65(4):3539–3549

    Article  Google Scholar 

  25. Palmero GS, Santamaria JJ, de la Torre EM, González JP (2005) Fault detection and fuzzy rule extraction in ac motors by a neuro-fuzzy art-based system. Eng Appl Artif Intell 18(7):867–874

    Article  Google Scholar 

  26. Pons-Llinares J, Antonino-Daviu JA, Riera-Guasp M, Lee SB, Kang TJ, Yang C (2014) Advanced induction motor rotor fault diagnosis via continuous and discrete time-frequency tools. IEEE Trans Industr Electron 62(3):1791–1802

    Article  Google Scholar 

  27. Rao B (1996) Handbook of condition monitoring. Elsevier, Amsterdam

    Google Scholar 

  28. Sarikaya R, Hinton GE, Deoras A (2014) Application of deep belief networks for natural language understanding. IEEE/ACM Trans Audio Speech Lang Process (TASLP) 22(4):778–784

    Article  Google Scholar 

  29. Schoen RR, Habetler TG, Kamran F, Bartfield R (1995) Motor bearing damage detection using stator current monitoring. IEEE Trans Ind Appl 31(6):1274–1279

    Article  Google Scholar 

  30. Shao H, Jiang H, Li X, Liang T (2018) Rolling bearing fault detection using continuous deep belief network with locally linear embedding. Comput Ind 96:27–39

    Article  Google Scholar 

  31. Shao S, McAleer S, Yan R, Baldi P (2018) Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans Industr Inf 15(4):2446–2455

    Article  Google Scholar 

  32. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  33. Soualhi A, Medjaher K, Zerhouni N (2014) Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression. IEEE Trans Instrum Meas 64(1):52–62

    Article  Google Scholar 

  34. Sugumaran V, Ramachandran K (2011) Effect of number of features on classification of roller bearing faults using SVM and PSVM. Expert Syst Appl 38(4):4088–4096

    Article  Google Scholar 

  35. Sun J, Yan C, Wen J (2017) Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning. IEEE Trans Instrum Meas 67(1):185–195

    Article  Google Scholar 

  36. Sun W, Shao S, Zhao R, Yan R, Zhang X, Chen X (2016) A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89:171–178

    Article  Google Scholar 

  37. Tandon N, Yadava G, Ramakrishna K (2007) A comparison of some condition monitoring techniques for the detection of defect in induction motor ball bearings. Mech Syst Signal Process 21(1):244–256

    Article  Google Scholar 

  38. Tavner P, Ran L, Penman J, Sedding H (2008) Condition monitoring of rotating electrical machines, vol. 56. IET

  39. Thorsen OV, Dalva M (1995) A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries. IEEE Trans Ind Appl 31(5):1186–1196

    Article  Google Scholar 

  40. Wang J, Li S, An Z, Jiang X, Qian W, Ji S (2019) Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines. Neurocomputing 329:53–65

    Article  Google Scholar 

  41. Wang W, Ismail F et al (2015) An enhanced bispectrum technique with auxiliary frequency injection for induction motor health condition monitoring. IEEE Trans Instrum Meas 64(10):2679–2687

    Article  Google Scholar 

  42. Wen L, Li X, Gao L (2019) A new two-level hierarchical diagnosis network based on convolutional neural network. IEEE Trans Instrum Meas 60:330–338

    Google Scholar 

  43. Wen L, Li X, Gao L, Zhang Y (2017) A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans Industr Electron 65(7):5990–5998

    Article  Google Scholar 

  44. Wong WK, Loo CK, Lim WS, Tan PN (2010) Thermal condition monitoring system using log-polar mapping, quaternion correlation and max-product fuzzy neural network classification. Neurocomputing 74(1–3):164–177

    Article  Google Scholar 

  45. Xie J, Du G, Shen C, Chen N, Chen L, Zhu Z (2018) An end-to-end model based on improved adaptive deep belief network and its application to bearing fault diagnosis. IEEE Access 6:63584–63596

    Article  Google Scholar 

  46. Ye Z, Wu B, Sadeghian A (2003) Current signature analysis of induction motor mechanical faults by wavelet packet decomposition. IEEE Trans Industr Electron 50(6):1217–1228

    Article  Google Scholar 

  47. Younus AM, Yang BS (2012) Intelligent fault diagnosis of rotating machinery using infrared thermal image. Expert Syst Appl 39(2):2082–2091

    Article  Google Scholar 

  48. Zarei J (2012) Induction motors bearing fault detection using pattern recognition techniques. Expert Syst Appl 39(1):68–73

    Article  Google Scholar 

  49. Zhang W, Jia MP, Zhu L, Yan XA (2017) Comprehensive overview on computational intelligence techniques for machinery condition monitoring and fault diagnosis. Chin J Mech Eng 30(4):782–795

    Article  Google Scholar 

  50. Zhang X, Zhou J (2013) Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines. Mech Syst Signal Process 41(1–2):127–140

    Article  Google Scholar 

  51. Zhou W, Habetler TG, Harley RG (2008) Bearing fault detection via stator current noise cancellation and statistical control. IEEE Trans Industr Electron 55(12):4260–4269

    Article  Google Scholar 

  52. Zhu K, Song X, Xue D (2014) A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm. Measurement 47:669–675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Shankar Hati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Hati, A.S. Transfer learning-based deep CNN model for multiple faults detection in SCIM. Neural Comput & Applic 33, 15851–15862 (2021). https://doi.org/10.1007/s00521-021-06205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06205-1

Keywords

Profiles

  1. Prashant Kumar
  2. Ananda Shankar Hati