Skip to main content
Log in

Exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms via intermittent control

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, the issue of exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms is investigated by using periodically intermittent control. It deserves to mention that spatial diffusions, multilayer interactions and fractional dynamics are introduced to coupled neural networks at the same time. A novel fractional-order differential inequality is established on the basis of Caputo partial fractional operator. Moreover, to realize exponential synchronization of the underlying neural networks, some sufficient conditions are presented with the help of Lyapunov method and graph theory. Theoretical results show that the exponential convergence rate is dependent on the control gain and the order of fractional derivative. Finally, an illustrative numerical example is provided to further verify the feasibility and effectiveness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Newman MEJ (2003) The structure and function of complex networks. SLAM Rev 45(2):167–256

    MathSciNet  MATH  Google Scholar 

  2. Guo Y, Liu Y, Xu Y (2019) Synchronized stationary distribution of stochastic coupled systems based on graph theory. Math Meth Appl Sci 45:4444-4455

    Google Scholar 

  3. Wang ZX, He HB, Jiang GP, Cao JD (2021) Quasi-synchronization in heterogeneous harmonic oscillators with continuous and sampled coupling. IEEE Trans Syst Man Cybern -Syst 51(2):1267–1277

    Google Scholar 

  4. Zhou H, Song J, Li WX (2020) Razumikhin method to stability of delay coupled systems with hybrid switching diffusions. Nonlinear Anal Hybrid Syst 38:100934

    MathSciNet  Google Scholar 

  5. Wang ZX, He HB, Jiang GP, Cao JD (2020) Distributed tracking in heterogeneous networks with asynchronous sampled-data control. IEEE Trans Ind Inform 16(12):7381–7391

    Google Scholar 

  6. Wu YB, Li YC, Li WX (2020) Almost surely exponential synchronization of complex dynamical networks under aperiodically intermittent discrete observations noise. IEEE T Cybern. https://doi.org/10.1109/TCYB.2020.3022296

    Article  Google Scholar 

  7. Wang ZX, He HB (2020) Asynchronous quasi-consensus of heterogeneous multiagent systems with nonuniform input delays. IEEE Trans Syst Man Cybern Syst 50(8):2815–2827

    Google Scholar 

  8. Chatterjee S, Sarkar S, Hore S, Dey N, Ashour AS, Balas VE (2017) Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput Appl 28(8):2005–2016

    Google Scholar 

  9. Xu DS, Liu Y, Liu M (2021) Finite-time synchronization of multi-coupling stochastic fuzzy neural networks with mixed delays via feedback control. Fuzzy Sets Syst 411:85–104

    MathSciNet  MATH  Google Scholar 

  10. Wang YQ, Lu JQ, Li XD, Liang JL (2020) Synchronization of coupled neural networks under mixed impulsive effects: a novel delay inequality approach. Neural Netw 127:38–46

    MATH  Google Scholar 

  11. Xie X, Liu XZ, Xu HL (2019) Synchronization of delayed coupled switched neural networks: mode-dependent average impulsive interval. Neurocomputing 365:261–272

    Google Scholar 

  12. Zhang ZQ, Ren L (2019) New sufficient conditions on global asymptotic synchronization of inertial delayed neural networks by using integrating inequality techniques. Nonlinear Dyn 95(2):905–917

    MathSciNet  MATH  Google Scholar 

  13. Katchinskiy N, Goez HR, Dutta I, Godbout R, Elezzabi AY (2016) Novel method for neuronal nanosurgical connection. Sci Rep 6:20529

    Google Scholar 

  14. Zhao X, Lu XJ, Zeng ZJ (2021) Synchronized stationary distribution for stochastic multi-links systems with Markov jump. Nonlinear Anal Hybrid Syst 40:101006

    MathSciNet  Google Scholar 

  15. Hou J, Huang YL, Ren SY (2019) Anti-synchronization analysis and pinning control of multi-weighted coupled neural networks with and without reaction-diffusion terms. Neurocomputing 330:78–93

    Google Scholar 

  16. Tang HA, Wang JL, Wang LD, Hu XF, Zhou Y, Duan SK (2019) Impulsive control for passivity and exponential synchronization of coupled neural networks with multiple weights. J Frankl Inst Eng Appl Math 356(10):5434–5463

    MathSciNet  MATH  Google Scholar 

  17. Zhang H, Zeng ZG, Han QL (2019) Synchronization of multiple reaction-diffusion neural networks with heterogeneous and unbounded time-varying delays. IEEE T Cybern 49(8):2980–2991

    Google Scholar 

  18. Wang JL, Wu HN, Guo L (2011) Passivity and stability analysis of reaction-diffusion neural networks with dirichlet boundary conditions. IEEE Trans Neural Netw 22(12):2105–2116

    Google Scholar 

  19. Ma Q, Feng G, Xu SY (2013) Delay-dependent stability criteria for reaction-diffusion neural networks with time-varying delays. IEEE T Cybern 43(6):1913–1920

    Google Scholar 

  20. Lin JZ, Xu R, Li LC (2020) Turing-Hopf bifurcation of reaction-diffusion neural networks with leakage delay. Commun Nonlinear Sci Numer Simul 85:105241

    MathSciNet  MATH  Google Scholar 

  21. Tyagi S, Abbas S, Kirane M (2018) Global asymptotic and exponential synchronization of ring neural network with reaction-diffusion term and unbounded delay. Neural Comput Appl 30(2):487–501

    Google Scholar 

  22. Liu LJ, Chen WH, Lu XM (2018) Impulsive \(H_{\infty }\) synchronization for reaction-diffusion neural networks with mixed delays. Neurocomputing 272:481–494

    Google Scholar 

  23. Yang XS, Song Q, Cao JD, Lu JQ (2019) Synchronization of coupled Markovian reaction-diffusion neural networks with proportional delays via quantized control. IEEE Trans Neural Netw Learn Syst 30(3):951–958

    MathSciNet  Google Scholar 

  24. Ezzat MA (2012) State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Transf 48(1):71–82

    Google Scholar 

  25. Lu C, Sun G,  Zhang  Y (2021) Stationary distribution and extinction of a multi-stage HIV model with nonlinear stochastic perturbation. J Appl Math Comput. https://doi.org/10.1007/s12190-021-01530-z

  26. Niedziela M, Wlazlo J (2008) Notes on computational aspects of the fractional-order viscoelastic model. J Eng Math 108(1):91–105

    MathSciNet  MATH  Google Scholar 

  27. Li HL, Hu C, Cao JD, Jiang HJ, Alsaedi A (2019) Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw 118:102–109

    MATH  Google Scholar 

  28. Xu Y, Yu JT, Li WX, Feng JQ (2021) Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links. Appl Math Comput 389:125498

    MathSciNet  MATH  Google Scholar 

  29. Peng X, Wu HQ (2020) Non-fragile robust finite-time stabilization and H infinity performance analysis for fractional-order delayed neural networks with discontinuous activations under the asynchronous switching. Neural Comput Appl 32(8):4045–4071

    Google Scholar 

  30. Xu Y, Gao S, Li WX (2020) Exponential stability of fractional-order complex multi-links networks with aperiodically intermittent control. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.3016672

    Article  Google Scholar 

  31. Xu Y, Wang Q, Li WX, Feng JQ (2021) Stability and synchronization of fractional-order delayed multilink complex networks with nonlinear hybrid couplings. Math Meth Appl Sci 44(5):3356–3375

    MathSciNet  MATH  Google Scholar 

  32. Stamova I, Stamov G (2017) Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers. Neural Netw 96:22–32

    MATH  Google Scholar 

  33. Lv YJ, Hu C, Yu J, Jiang HJ, Huang TW (2020) Edge-based fractional-order adaptive strategies for synchronization of fractional-order coupled networks with reaction-diffusion terms. IEEE T Cybern 50(4):1582–1594

    Google Scholar 

  34. Sun WJ, Ren GJ, Yu YG, Hai XD (2020) Global synchronization of reaction-diffusion fractional-order memristive neural networks with time delay and unknown parameters. Complexity 2020:4145826

    MATH  Google Scholar 

  35. Stamova IM, Simeonov S (2018) Delayed reaction-diffusion cellular neural networks of fractional order: Mittag-Leffler stability and synchronization. J Comput Nonlinear Dyn 13(1):11–15

    Google Scholar 

  36. Xu Y, Chu CY, Li WX (2018) Quantized feedback control scheme on coupled systems with time delay and distributed delay: a finite-time inner synchronization analysis. Appl Math Comput 337:315–328

    MathSciNet  MATH  Google Scholar 

  37. Liu Y, Wang M, Chu DH, Su H (2021) Feedback control based on discrete-time state observations on synchronization of stochastic impulsive coupled systems. Nonlinear Anal Hybrid Syst 39:100987

    MathSciNet  Google Scholar 

  38. Li S, Zhang BG, Li WX (2021) Stabilisation of multi-weights stochastic complex networks with time-varying delay driven by G-Brownian motion via aperiodically intermittent adaptive control. Int J Control 94(1):7–20

    MathSciNet  MATH  Google Scholar 

  39. Zhou PP, Cai SM, Shen JW, Liu ZR (2018) Adaptive exponential cluster synchronization in colored community networks via aperiodically intermittent pinning control. Nonlinear Dyn 92(3):905–921

    MATH  Google Scholar 

  40. Liu Y, Liu J, Li WX (2020) Stabilization of highly nonlinear stochastic coupled systems via periodically intermittent control. Control IEEE Trans Autom. https://doi.org/10.1109/TAC.2020.3036035

    Article  Google Scholar 

  41. Xu LG, Liu W, Hu HX, Zhou WS (2019) Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. Nonlinear Dyn 96(2):1665–1675

    MATH  Google Scholar 

  42. Xu Y, Li Q, Li WX (2019) Periodically intermittent discrete observation control for synchronization of fractional-order coupled systems. Commun Nonlinear Sci Numer Simul 74:219–235

    MathSciNet  MATH  Google Scholar 

  43. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  44. Hu C, Jiang HJ, Teng ZD (2010) Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms. IEEE Trans Neural Netw 21(1):67–81

    Google Scholar 

  45. Li MY, Shuai ZS (2010) Global-stability problem for coupled systems of differential equations on networks. J Differ Equ 248(1):1–20

    MathSciNet  MATH  Google Scholar 

  46. Jia Q, Tang WKS (2020) Event-based tracking consensus for multiagent systems with volatile control gain. IEEE T Cybern. https://doi.org/10.1109/TCYB.2020.3027039

    Article  Google Scholar 

  47. Jia Q, Mwanandiye ES, Tang WKS (2020) Master-slave synchronization of delayed neural networks with time-varying control. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.2996224

    Article  Google Scholar 

  48. Cai SM, Lei XQ, Liu ZR (2016) Outer synchronization between two hybrid-coupled delayed dynamical networks via aperiodically adaptive intermittent pinning control. Complexity 21(S2):593–605

    MathSciNet  Google Scholar 

  49. Zhou PP, Shi JY, Cai SM (2020) Pinning synchronization of directed networks with delayed complex-valued dynamical nodes and mixed coupling via intermittent control. J Frankl Inst Eng Appl Math 357(17):12840–12869

    MathSciNet  MATH  Google Scholar 

  50. Wang PF, Wang RF, Su H (2021) Stability of time-varying hybrid stochastic delayed systems with application to aperiodically intermittent stabilization. IEEE T Cybern. https://doi.org/10.1109/TCYB.2021.3052042

    Article  Google Scholar 

Download references

Acknowledgements

The authors really appreciate the valuable comments of the editors and reviewers. This work was supported by Shandong Province Natural Science Foundation (Nos. ZR2018MA005, ZR2018MA020, ZR2017MA008); the Key Project of Science and Technology of Weihai (No. 2014DXGJMS08) and the Innovation Technology Funding Project in Harbin Institute of Technology (No. HIT.NSRIF.201703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxue Li.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof

Since matrix \({\hat{M}}\) is a symmetric and positive definite matrix, there exists an orthogonal matrix \(P\in {\mathbb {R}}^{n\times n}\) and a diagonal matrix \(\Lambda =\mathrm {diag}\{\lambda _{1},\lambda _{2},\ldots , \lambda _{n}\}\in {\mathbb {R}}^{n\times n}\) such that \(P\Lambda P^{\mathrm {T}}={\hat{M}}\), in which \(\lambda _{i}>0\). Then, we can see that

$$\begin{aligned} \Psi ^{\mathrm {T}}(x,t){\hat{M}}\Psi (x,t)&= {} \Psi ^{\mathrm {T}}(x,t)P\Lambda P^{\mathrm {\mathrm {T}}}\Psi (x,t)\nonumber \\&= {} \left( P^{\mathrm {T}}\Psi (x,t)\right) ^{\mathrm {T}}\Lambda \left( P^{\mathrm {T}}\Psi (x,t)\right) . \end{aligned}$$
(19)

Let \(\Phi (x,t)=P^{\mathrm {T}}\Psi (x,t)\), where \(\Phi (x,t)=\left( \Phi _{1}(x,t),\Phi _{2}(x,t),\ldots ,\Phi _{n}(x,t)\right) ^{\mathrm {T}}\). According to (19), one has

$$\begin{aligned} \Psi ^{\mathrm {\mathrm {T}}}(x,t){\hat{M}}\Psi (x,t) =\Phi ^{\mathrm {T}}(x,t)\Lambda \Phi (x,t). \end{aligned}$$

Noticing that \(\Lambda\) is diagonal, we derive\(\Phi ^{\mathrm {T}}(x,t)\Lambda \Phi (x,t)=\sum _{i=1}^{n}\lambda _{i}\Phi _{i}^{2}(x,t).\) That is to say for \(\forall \alpha \in (0,1],~t\ge t_{0}\)

$$\begin{aligned} {}_{t_{0}}^{C}{D_{t}^{\alpha }}\Phi ^{\mathrm {T}}(x,t)\Lambda \Phi (x,t)&= {} {}_{t_{0}}^{C}{D_{t}^{\alpha }}\sum _{i=1}^{n}\lambda _{i} \Phi _{i}^{2}(x,t)\nonumber \\&= {} \sum _{i=1}^{n}\lambda _{i}~ {}_{t_{0}}^{C}{D_{t}^{\alpha }}\Phi _{i}^{2}(x,t). \end{aligned}$$
(20)

Applying Lemma 3, due to \(\lambda _{i}>0\), in line with (20), it is obtained that

$$\begin{gathered} _{{t_{0} }}^{C} D_{t}^{\alpha } \Phi ^{{\text{T}}} (x,t)\Lambda \Phi (x,t) \hfill \\ \le 2\sum\limits_{{i = 1}}^{n} {\lambda _{i} } \Phi _{i}^{{\text{T}}} (x,t)_{{t_{0} }}^{C} D_{t}^{\alpha } \Phi _{i} (x,t). \hfill \\ \end{gathered}$$
(21)

Since \(\lambda _{i}\) is the diagonal element of matrix \(\Lambda\), it is clear that

$$\begin{aligned} \sum _{i=1}^{n}\lambda _{i}\Phi _{i}^{\mathrm {T}} (x,t){}_{t_{0}}^{C}{D_{t}^{\alpha }}\Phi _{i}(x,t) =\Phi ^{\mathrm {T}}(x,t)\Lambda {}_{t_{0}}^{C}{D_{t}^{\alpha }}\Phi (x,t). \end{aligned}$$

Consequently, combined with (21), for \(\forall \alpha \in (0,1],~t\ge t_{0}\), we state that

$$\begin{aligned} {}_{t_{0}}^{C}{D_{t}^{\alpha }}\Phi ^{\mathrm {T}}(x,t) \Lambda \Phi (x,t)\le 2\Phi ^{\mathrm {T}}(x,t)\Lambda {}_{t_{0}}^{C}{D_{t}^{\alpha }}\Phi (x,t). \end{aligned}$$

Considering \(\Phi (x,t)=P^{\mathrm {T}}\Psi (x,t)\), for \(\forall \alpha \in (0,1],~t\ge t_{0}\), we obtain

$$\begin{gathered} _{{t_{0} }}^{C} D_{t}^{\alpha } \left( {P^{{\text{T}}} \Psi (x,t)} \right)^{{\text{T}}} \Lambda \left( {P^{{\text{T}}} \Psi (x,t)} \right) \hfill \\ \le 2\left( {P^{{\text{T}}} \Psi (x,t)} \right)^{{\text{T}}} \Lambda _{{t_{0} }}^{C} D_{t}^{\alpha } \left( {P^{{\text{T}}} \Psi (x,t)} \right). \hfill \\ \end{gathered}$$
(22)

Rearranging and using \(P\Lambda P^{\mathrm {T}}={\hat{M}}\) into (22), for \(\forall \alpha \in (0,1],~t\ge t_{0}\), it is concluded that

$$\begin{aligned} {}_{t_{0}}^{C}{D_{t}^{\alpha }}\Psi ^{\mathrm {T}}(x,t) {\hat{M}}\Psi (x,t)\le 2\Psi ^{\mathrm {T}}(x,t){\hat{M}}{}_{t_{0}}^{C}{D_{t}^{\alpha }}\Psi (x,t). \end{aligned}$$

This completes the proof. \(\square\)

Appendix B

Proof

When \(t\in T_m^c\), in view of (5), there is a nonnegative function A(t) such that

$$\begin{aligned} {}_{T_{m}}^{C}{D_{t}^{\alpha }}V(t)+A(t)=-\zeta _{1}V(t). \end{aligned}$$
(23)

Taking Laplace transform of (23), we have

$$\begin{aligned} s^{\alpha }{\mathbb {V}}(s)+s^{\alpha -1}{\mathbb {V}}(T_{m})+{\mathbb {A}}(s) =-\zeta _{1}{\mathbb {V}}(s), \end{aligned}$$
(24)

where \({\mathbb {V}}(s)\) and \({\mathbb {A}}(s)\) denote the Laplace transform of V(t) and A(t), respectively. Then, taking inverse Laplace transform of (24), we get

$$\begin{aligned} V(t)&= {} V(T_{m})E_{\alpha }\left( -\zeta _{1}(t-T_{m})^{\alpha }\right) \\&-A(t)*\left\{ \left( t-T_{m}\right) ^{\alpha }E_{\alpha ,\alpha } \left( -\zeta _{1}\left( t-T_{m}\right) ^{\alpha }\right) \right\} , \end{aligned}$$

where \(*\) represents the convolution operator. Since \((t-T_{m})^{\alpha }\) and \(E_{\alpha ,\alpha }(-\zeta _{1}\left( t-T_{m}\right) ^{\alpha })\) are nonnegative functions, it yields that

$$\begin{aligned} V(t)\le V(T_{m})E_{\alpha }(-\zeta _{1}\left( t-T_{m}\right) ^{\alpha }). \end{aligned}$$

When \(t\in T_m^r\), based on (5), there exists a nonnegative function B(t) such that

$$\begin{aligned} {}_{T_{m}+\theta }^{C}{D_{t}^{\alpha }}V(t)+B(t)=\zeta _{2}V(t). \end{aligned}$$
(25)

Similarly to the case of \(t\in T_m^c\), for (25), one obtain

$$\begin{aligned} V(t)&= {} V(T_{m}+\theta )E_{\alpha }\left( \zeta _{2}(t-(T_{m}+\theta ))^{\alpha }\right) -B(t)\\&\times \left\{ \left( t-(T_{m}+\theta )\right) ^{\alpha } E_{\alpha ,\alpha }\left( \zeta _{2}\left( t-(T_{m}+\theta )\right) ^{\alpha }\right) \right\} . \end{aligned}$$

Hence, owing to the nonnegativity of \((t-(T_{m}+\theta ))^{\alpha }\) and \(E_{\alpha ,\alpha }(\zeta _{2}\left( t-(T_{m}+\theta )\right) ^{\alpha })\), it follows that

$$\begin{aligned} V(t)\le V(T_{m}+\theta )E_{\alpha }(\zeta _{2}(t-(T_{m}+\theta ))^{\alpha }). \end{aligned}$$

This proof is now completed. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Sun, F. & Li, W. Exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms via intermittent control. Neural Comput & Applic 33, 16019–16032 (2021). https://doi.org/10.1007/s00521-021-06214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06214-0

Keywords

Navigation