
ORIGINAL ARTICLE

CondenseNet with exclusive lasso regularization

Lizhen Ji1 • Jiangshe Zhang1 • Chunxia Zhang1 • Cong Ma1 • Shuang Xu1 • Kai Sun1

Received: 18 December 2020 / Accepted: 8 June 2021 / Published online: 27 June 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Group convolution has been widely used in deep learning community to achieve computation efficiency. In this paper, we

develop CondenseNet-elasso to eliminate feature correlation among different convolution groups and alleviate neural

network’s overfitting problem. It applies exclusive lasso regularization on CondenseNet. The exclusive lasso regularizer

encourages different convolution groups to use different subsets of input channels therefore learn more diversified features.

Our experiment results on CIFAR10, CIFAR100 and Tiny ImageNet show that CondenseNets-elasso are more efficient

than CondenseNets and other DenseNet’ variants.

Keywords CondenseNet � Exclusive lasso � Group convolution � Neural network regularization

1 Introduction

In the past decade, deep learning has achieved remarkable

breakthroughs in a large variety of applications, such as

image classification [25, 40], object detection [37, 38] and

semantic segmentation [20, 29]. Meanwhile, the architec-

ture of deep convolutional neural networks (CNNs) has

evolved for years. ResNet [12] is a milestone in the

development of neural network architectures by introduc-

ing shortcut connections to ease optimization in training

very deep networks; however it utilizes a large number of

parameters. To alleviate the huge computational burden

from ResNet, a more computationally efficient DenseNet is

proposed [17]. Different from ResNet of combining fea-

tures through summation, DenseNet combines feature from

concatenation, therefore it can be trained more efficiently.

However, some redundancy still lies in there, especially in

bottleneck layers. Visualization of connectivity pattern of

DenseNet shows that later layers tend to prefer more

recently learned features and some features from very early

layers [17]. Deep roots also claims it is unlikely that every

filter in a neural network relies on the output of all the

filters in the previous layer [18]. These observations lead to

sparsely connected architectures like LogDenseNet [14]

and SparseNet [57], which use a sparsely ‘‘log-offset’’

connectivity pattern to improve DenseNet’s efficiency in

terms of parameters. However, this pre-defined connec-

tivity pattern is not flexible. To overcome this shortcoming,

Huang et al. propose CondenseNet [16], a novel network

architecture to gradually remove less important connec-

tions in bottleneck layers. Based on the observation that

different convolutional groups in CondenseNet prunes fil-

ters independently and inspired by the fact that exclusive

lasso regularization brings sparsity at intra-group level

[22], we insert exclusive lasso penalty into CondenseNet to

learn more diversified features. Our proposed model is

denoted as CondenseNet-elasso. Our method applies to

scenarios whose network backbone composed of stacks of

dense blocks. It is also promising to study to combine our

proposed method to applications like medical images [21],

graph convolution networks [7] and body pose prediction

[46].

Our Contribution In this paper, we propose an exclusive

lasso regularizer on the learned group convolutional layer

in CondenseNet to decorrelate filters between different

convolutional groups, therefore alleviating the neural net-

work’s overfitting problem. This method can reduce filter

co-dependence between different groups. We validate

CondenseNet-elasso of varying depths on our proposed

& Jiangshe Zhang

jszhang@mail.xjtu.edu.cn

Lizhen Ji

jlz_stat@stu.xjtu.edu.cn

1 School of Mathematics and Statistics, Xi’an Jiaotong

University, Xi’an 710049, People’s Republic of China

123

Neural Computing and Applications (2021) 33:16197–16212
https://doi.org/10.1007/s00521-021-06222-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06222-0&domain=pdf
https://doi.org/10.1007/s00521-021-06222-0

method on three public datasets and medical images (Ap-

pendix B). The experimental results demonstrate that it

achieves better performance under the same computation

budget compared with CondenseNet and achieves much

better performance compared with other DenseNet’s

variants.

Outline of the paper Section 2 gives a brief review of

related works. Section 3 describes DenseNet and Con-

denseNet which our method is based on. Section 4 devotes

to introduce our proposed CondenseNet-elasso. Next, in

Sect. 5, a large set of experiments are carried out to

examine the performance of CondenseNet-elasso. To be

specific, Sect. 5.3 shows classification results on CIFAR

and Tiny ImageNet on models of different scales. Sec-

tion 5.4 validates our assumption on why the exclusive

lasso regularization works. Section 5.6 compares our model

with other group convolution variants. Finally, we con-

clude this paper in Sect. 6.

2 Related work

In this section, we review related works on network

pruning methods, group convolutions, neural network

regularization and exclusive lasso.

Network pruning Deep networks often have a large number

of redundant weighs that can be pruned without sacrificing

accuracy [6]. Han et al. propose an iterative process to

remove unimportant connections based on l1-norm and l2-

norm, followed by fine-tuning to recover model accuracy

[10]. Hu et al. claim that neurons with high APoZ (average

percentage of zeros) are redundant and can be pruned

without affecting the overall performance of the network

[15]. Structured Sparsity Learning (SSL) is proposed to

regularize the structures (filter, filter shapes and layer

depth) of DNNs [45]. ThiNet uses the reconstruction error

of the of the next layer to measure the importance of filters

in the current layer [31]. Li et al. propose a data free filter

selection criterion to use the l1-norm as the importance

measurement [26]. This method can prune multiple layers

at once based on a layer level sensitivity analysis. He et al.

propose the soft filter pruning method which allows pruned

filters to recover to nonzero through backpropagation [13].

Yu et al. measure neuron importance to minimize the

reconstruction error in the pre-softmax layer. The paper

gives out a closed form solution to calculate the ‘‘impor-

tance score’’ in earlier layers by propagating back from the

‘‘final response layer’’ [51].

Neural network regularization Many works on neural

network regularization have been proposed to benefit

generalization. Dropout [41] and dropconnect [42]

introduce regularization of deep networks through ran-

domly setting a subset of activations or weights to zero

during training. Cogswell et al. propose a regularizer that

encourages non-redundant or diverse representations in

DNNs through minimizing the cross-covariance of hidden

activations [4]. Changpinyo et al. propose to train models

in an incrementally manner by starting with a network only

contains a small fraction of connections and add connec-

tions over time [2].

Group lasso regularization has been introduced into

deep neural networks to obtain highly compact networks

[39]. However, there exists a strong filter correlation

among the convolutional filters trained by group lasso

constraints. Based on this observation, a decorrelation

regularization method was proposed to weaken the corre-

lation between different filters and achieve a more compact

model [58]. In the meantime, a sparsity-inducing regular-

izer called GrOWL (group ordered weighted l1) was

introduced, which not only eliminates unimportant neurons

but also identifies heavily correlated neurons by setting the

corresponding weights to a universal value [52].

Group convolution Group convolution has been widely

used in designing efficient networks. It was first introduced

in AlexNet due to a lack of GPU memory by partitioning

inputs into G mutually exclusive groups, each producing its

own output [25]. As a result, the number of parameters and

FLOPs reduce to 1/G of standard convolution. Meanwhile,

ResNeXt investigates the trade-off between depth, width

and the number of groups [47]. The paper suggests that a

larger number of groups leads to better accuracy under

similar computational costs. Ioannou et al. make a further

study on group convolution and propose Deep roots, which

uses filters groups to force the network to learn filers with

only limited dependence on previous layers [18].

Some researchers also propose learnable group convo-

lutions to make the group convolution more flexible. Peng

et al. use the low-rank decomposition to approximate the

weight matrix W into the product of two matrices D and P,

in which D is a block diagonal matrix which can be turned

into a group convolution and P is a 1 � 1 convolution [35].

Later on, fully learnable group convolution (FLGC) is

proposed to learn a binary selection matrix for input

channels and groups, including input channel-group con-

nectivity and filter-group connectivity [44]. One disad-

vantage of this method is that the final group convolution

does not have the same number of input channels in each

group and therefore it is hard to implement in some deep

learning frameworks (like PyTorch). Besides, FLGC forces

each input channel to be selected into the group with the

maximum probability. However, it may not be desirable

since some important input channels can be shared among

different convolutional groups. Meanwhile, Zhang et al.

16198 Neural Computing and Applications (2021) 33:16197–16212

123

propose a dynamic grouping method, which can learn

group number and channel connections simultaneously

through a relationship matrix [55]. To reduce the number

of learnable parameters in the relationship matrix, the

authors decompose it to a series of kronecker product of

smaller matrices. Dynamic grouping convolution can learn

the number of groups in each layer in an end-to-end

manner; however it requires the number of convolutional

filters to be the power of two, besides, some group con-

nectivity patterns cannot be represented by kronecker

product of small matrices. Recently, Guo et al. propose a

self-grouping convolutional neural networks (SG-CNN)

who generate groups based on a clustering method,

resulting in similar filters within groups and diverse filters

between groups [9]. However, the resulting convolution

groups have an uneven number of filters inside each group

which leads to inefficient implementation.

Exclusive lasso Exclusive lasso penalty (l1;2-norm) [56]

was first introduced in a multi-task feature selection

problem. This regularizer introduces competition among

different tasks for the same feature. An empirical way to

analyze the behavior of a penalty is to visualize its corre-

sponding isosurface [39]. An illustration example is shown

in Fig. 1c. The figure shows two special cases of exclusive

lasso: if each parameter is in its own group, the penalty is

equivalent to l2 penalty while if all parameters are in the

same group, the penalty is equivalent to the square of l1
norm.

Later on, Kong et al. propose the exclusive group lasso

leading to sparsity at an intra-group level [22]. In deep

learning context, Yoon and Hwang first use exclusive lasso

penalty as a regularization method in neural networks [50].

The paper employs group lasso to promote inter-group

sparsity and exclusive lasso to enforce intra-group sparsity.

They use a weighted version of these two regularizers to

achieve feature sharing and feature competition simulta-

neously. the resulting model is denoted as CGES (com-

bined group and exclusive sparsity). Exclusive sparsity

helps the network converge faster, learn less redundant

features, and make each group be as different as possible.

Different from CGES, our model achieves a group-level

sparsity while CGES achieves a filter-level sparsity. This is

because our model prunes filters based on the condensation

criterion while CGES prunes filters based on group lasso

and exclusive lasso regularizer.

3 DenseNet and CondenseNet

In this section, we describe DenseNet [17] and Con-

denseNet [16] on which our method is based.

3.1 DenseNet

The distinguishing property of DenseNet is that each layer

receives a concatenation of all feature maps that are gen-

erated by all preceding layers within the same dense block

(a) (b) (c)

Fig. 1 Unit balls for different regularization terms. let W ¼
ðw1

1;w
1
2;w

2
1Þ where superscript denotes group number and subscript

denotes index within a group. In this case, w1
1;w

1
2;w

2
1 are variables

along x-, y- and z-axes, respectively. The penalty is defined as

X ¼ ð w1
1

�
�
�
�þ w1

2

�
�
�
�Þ2 þ w2

1

�
�
�
�
2
. a Considering variables in different

groups (w1
1 and w2

1) by setting w1
2 ¼ 0, this yields the ball generated

by l2-norm. The l2 unit ball is a sphere, which does not favor any of

the variables. b Considering variables in the same group (w1
1 and w1

2)

by setting w2
1 ¼ 0, this yields a unit ball generated by l1-norm. The l1

unit ball is a regular octahedron surface, enforcing sparsity between

different variables. c Unit ball for l1;2 penalty. l1;2 unit ball enforcing

sparsity inside group and diversity between groups

Neural Computing and Applications (2021) 33:16197–16212 16199

123

as its input. In particular, the lth layer receives the feature

maps of all preceding layers,namely,

xl ¼ Hlð½x0; x1; :::; xl�1�Þ ð1Þ

where ½x0; x1; :::; xl�1� refers to the concatenation of the

feature maps produced in the previous l layers. There are

two architectures in DenseNet [17]. One is DenseNet

whose basic building block is a 3 � 3 convolutional layer

(Fig. 2a). The other one is DenseNet-bottleneck (Dense-

Net-BC) whose basic building block is composed of one

1 � 1 bottleneck layer followed by one 3 � 3 convolutional

layer (Fig. 2b). In this paper, we mainly focus on pruning

bottleneck layers, therefore we use DenseNet as an

abbreviation for DenseNet-BC in later discussions.

3.2 CondenseNet

To learn a good connectivity pattern automatically, Con-

denseNet was proposed on the basis of DenseNet [16].

Specifically, the authors design a new basic building block,

Learned Group Convolution, by splitting the filters of

bottleneck layer into multiple groups and gradually remove

less important features during training. CondenseNet

improves DenseNet’s efficiency in terms of number of

parameters and floating-point operations (FLOPs). The

most prominent characteristic of CondenseNet is that the

final pre-trained model can be converted into standard

group convolutions which brings in actual acceleration at

deployment.

Here, we first introduce some notations to facilitate the

discussions in this section. Standard convolutional layer

generates O output feature maps by applying O convolu-

tional filters over R input feature maps. For bottleneck

layers with kernel size one, a 4D weight tensor is simplified

to a 2D matrix. For each convolutional layer, the kernel is

divided to G groups, denoted as W1;W2; :::;WG where G is

a pre-defined number, in which Wg is of size O
G � R. We use

the symbol Wg;l
i;j to represent the weight of the jth input for

the ith output within group g in layer l. In what follows, we

will introduce some key components in CondenseNet.

Network DenseNet’s basic building layer is composed of

one 1 9 1 convolutional layer followed by one 3 9 3

convolutional layer. CondenseNet replaces its first layer

with learned group convolution and replaces its second

layer with group convolution. DenseNet adds k new feature

maps at each block, which is referred as growth rate.

Meanwhile, CondenseNet uses an ‘‘exponentially increas-

ing growth rate’’ schedule: the growth rate doubles when

the feature map size downsamples. To encourage feature

reuse, CondenseNet removes 1 9 1 convolutional layers

for channel reduction in transition blocks between stages in

DenseNet. If not, the resulting model is called Con-

denseNet-light.

Condensation criterion Condensation criterion measures

the importance of each input channel to each convolutional

group. It gives the each convolutional group the flexibility

to select the most relevant input features and guarantees

filters in each convolutional group select the same subset of

input channels. To be specific, the importance of jth input

channel for the filter group g is evaluated by the averaged

absolute value of weights between them across all outputs

within the group. This importance score is denoted as Sg;lj ,

namely, Sg;lj ¼
PO=G

i¼1 Wg;l
i;j

�
�
�

�
�
�: The pruning procedure used in

CondenseNet can be summarized as follows: For a given

group g, calculate importance score Sg;lj for each input

channel j; Sort Sg;lj in an ascending order, select the smaller

1/C filters, and denote the corresponding filters as Wg;l
j;lower;

Zero out the filters in Wg;l
j;lower . This condensation criterion

forces each layer to have limited dependency on previous

layers and this sparse connectivity pattern reduces com-

putational complexity and model size.

Training Suppose M denote the total number of training

epochs, the first M/2 training epochs called condensing

stage is used for pruning while the second M/2 training

epochs called optimization stage is used for fine-tuning.

Each condensing stage screens out 1/C of filters for each

convolutional group, there are C � 1 condensing stage in

total and therefore only 1/C filters left in the final model.

One thing to note is that the pruned weights are not

removed during training, the Filter F is masked by a binary

tensor M of the same size using the element-wise product.

When training is finished, the learned group convolutions

are rearranged to standard group convolution through M,

the final model is called the converted model. The FLOPs

and parameters for learned group convolutions reduce to 1/

C of standard convolution in the final converted model. To

facilitate the understanding of the training process of

CondenseNet, we illustrate it in Fig. 3. Suppose that the

total training epoch is 300 and the condensation factor C is

4, each learned group convolution is pruned before epoch

50, 100 and 150 with 75%, 50% and 25% filters remained,

(a) (b)

Fig. 2 a DenseNet basic building block. b DenseNet-bottleneck basic

building block

16200 Neural Computing and Applications (2021) 33:16197–16212

123

respectively. Next, the model is fine-tuned for another 150

epochs. A detailed training process is illustrated in Algo-

rithm 1.

4 CondenseNet with exclusive lasso
regularizer

At present, various regularization strategies have been

developed and they are indeed beneficial to enhance the

generalization capacity of DNNs. A simple and effective

way is to add a proper regularization term to the loss

function. To the best of our knowledge, there is no litera-

ture investigating how the exclusive lasso regularizer can

be applied in CondenseNet. In order to address this issue,

we would like to improve CondenseNet’s performance by

introducing an exclusive lasso penalty on learned group

convolutions. In later discussions, the proposed model is

abbreviated as CondenseNet-elasso for ease of exhibition.

First, we introduce some notations for the rest of the paper.

Suppose D ¼ fxi; yigNi¼1 denote the training dataset with N

instances. xi is ith input, yi is the class label with k classes.

Let WðlÞ denote the weights of the lth layer, and L denote

the total number of layers. fWðlÞg includes the weights

across all L layers. LðWÞ is the cross-entropy loss of the

classification task parameterized by W. Suppose R and O

denote the number of input and output channels, respec-

tively. G indicates the number of group convolutions. Wg;l
i;j

refers to the jth input for the ith output for group g in layer

l.

Regularizer Exclusive lasso was first introduced in a multi-

task learning framework to enforce the model parameters

in different tasks to compete for features. The training

procedure of CondenseNet guarantees that different groups

are pruned independently. Based on this observation, we

expect different convolutional groups to compete for input

channels, therefore achieve diversified feature representa-

tions. As a result, we regard filters connected to each input

channel as a group. Specifically, we define the regularizer

in layer l as:

XðWðlÞÞ ¼
XR

j¼1

XG

g¼1

Sg;lj

 !2

ð2Þ

¼
XR

j¼1

XG

g¼1

XO=G

i¼1

Wg;l
i;j

�
�
�

�
�
�

 !2

ð3Þ

¼
XR

j¼1

XO

i¼1

Wg;l
i;j

�
�
�

�
�
�

 !2

: ð4Þ

Experiment results in Sect. 5.4.1 show that our proposed

regularization term actually brings in less overlap of

incoming channels among different convolutional groups.

Moreover, Sect. 5.4.2 shows that the proposed regularizer

does help different groups to learn more diversified fea-

tures. In preliminary experiments, we also tried different

grouping strategies, for example, we regard filters from the

convolutional group g connected with input channel j as a

group, which is X1ðWðlÞÞ ¼
PR

j¼1

PG
g¼1

PO=G
i¼1 Wg;l

i;j

�
�
�

�
�
�

� �2

.

However, this regularizer does not lead to a consistent

model performance improvement over baseline models.

One thing to note is that Eq. (2) can be reformulated to

Eq. (4) while the format of Eq. (4) is equivalent to the

exclusive sparsity regularization in [50]. However, our

method is different from [50] in the following two aspects.

First, CondenseNets-elasso prune filters through conden-

sation criterion, not from this sparsity inducing regular-

ization term. The exclusive lasso penalty here is used to

encourage less redundancy between groups, not strictly

forcing each filter being included in exactly one convolu-

tional group. Second, condensation criterion guarantees

that filters in the same group take the same subset of

Fig. 3 CondenseNet training process illustration with group number

G=2 and input channel number R=8. Condensation factor C is set to 4.

Group 1 prunes out 2; 3 ! 1; 7 ! 4; 6 while Group 2 prunes out

4; 6 ! 1; 8 ! 5; 7 in three condensing stages. In the testing stage,

f5; 8g and f2; 3g are kept for Group 1 and Group 2 in the final

converted model. Pruned filters are marked by dashed light lines (Best

viewed in color)

Neural Computing and Applications (2021) 33:16197–16212 16201

123

incoming channels. In other words, a given input channel

can be selected by all filters in a convolutional group or

none filter in this convolutional group. This characteristic

results in group-level filter pruning while [50] results in

kernel-level filter pruning.

Loss We use the following loss function in training:

LðfWðlÞg;DÞ þ k
XL

l¼1

XðW lÞ: ð5Þ

Here, k represents the hyperparameter for the regulariza-

tion term XðWðlÞÞ and details on the hyperparameter setting

are described in Sect. 5.5. One thing to note is that we don’t

include XðW lÞ at optimization stage since it is only used

for selecting promising filters. The detailed training process

is shown in Algorithm 1.

Algorithm 1 Training Process of CondenseNet and CondenseNet-elasso
Parameter: Condense factor C, Total training epoch M
for i in [1,2,..,C-1] do Condensing Stage i

for j in [1,2,..., M
2(C−1)] do

Train the model, Loss = L({W (l)}, D) + λ L
l=1 Ω(W l) CondenseNet-elasso

Loss = L({W (l)}, D) CondenseNet
end for
Pruning: Mask 1

C
of filters

end for
for j in [1,2,...,M

2] do Optimization Stage
Train the model, Loss = L({W (l)}, D)

end for
pre-trained model → converted-model Convert the model

Optimization Campbell et al. give a coordinate descent

algorithm for optimization in the context of predictive

regression modeling with exclusive lasso regularization

[1]. Meanwhile, CGES use a proximal gradient descent

method for optimization. Concretely, the learned group

convolution kernels can be updated in an iterative manner

by first updating the selected variables with the loss-based

gradients, then applying the proximal operator for them.

Suppose W l
j 2 RO�1�k�k represent the weights connected

with jth input channel in layer l, the proximal operator for

the exclusive lasso regularizer is defined as:

proxELðW l
jÞ ¼ signðWl

j;iÞð Wl
j;i

�
�
�

�
�
�� kkW l

jk1Þþ: ð6Þ

In our case, we prune filters based on condensation crite-

rion therefore we do not follow Eq. (6) and stick to the

conventional stochastic gradient descent algorithm for

optimization in our experiments.

5 Experiments

5.1 Datasets

CIFAR Both CIFAR-10(C10) and CIFAR-100(C100) [24]

consist of colored images with 32 � 32 pixels. C10 and

C100 have 10 and 100 classes, respectively. The training

and testing sets contain 50,000 and 10,000 images,

respectively. Following [16], we adopt a standard data

augmentation schedule, including mirroring, shifting and

normalizing data using the channel means and standard

deviations.

Tiny ImageNet The Tiny ImageNet dataset is a subset of

ImageNet [5]. There are 200 categories sampled from 1000

classes of ImageNet, each class consists of 500 training

images, 50 validation images and 50 test images. All

images are downsampled to a fixed resolution of 64 � 64.

For preprocessing, 4 pixels are padded on every side and a

64 � 64 crop is randomly sampled from the padded image

or its horizontal flip. We normalize the data using the

channel means and standard deviations. For testing, we

only evaluate the original 64 � 64 images.

5.2 Training

We use the following default settings in all our experiments

unless otherwise specified. The default growth rate is

{8,16,32} on CIFAR and is {12,24,48} on Tiny ImageNet.

Default condensation factor C and group number G is 4.

We call the blocks within the same stage if they have the

same feature map size. All our networks have three stages

and each stage has the same number of blocks. We choose

models with different depths to test the effect of the

exclusive lasso regularization on different model scales.

Specifically, models with 50, 86, 122 and 182 layers have

{8-8-8}, {14-14-14}, {20-20-20} and {30-30-30} blocks in

three stages, respectively.

Following the training schedule in [16], all networks are

trained using stochastic gradient descent (SGD). Specifi-

cally, we adopt Nesterov momentum with a weight decay

of 1e-4 and a momentum of 0.9. We train the models using

a batch size of 64 for 300 epochs on all datasets by default.

We adopt the weight initialization introduced by [11] and

batch normalization [19]. For CondenseNet-182 on

CIFAR, we train the model for 600 epochs with a dropout

[41] rate of 0.1. CondenseNet-182 on Tiny ImageNet is

trained for 300 epochs with a dropout rate of 0.1. We use a

cosine learning rate [30] starting from 0.1 and gradually

reduces to 0. Following the implementation of Con-

denseNet, we apply a dropout layer after batch normal-

ization layer, which is suggested by [27] to avoid the

‘‘variance shift’’ phenomenon when dropout layers are

placed before batch normalization layers. We zero out

gradients of the pruned filters during backward propaga-

tion. To ensure a fair comparison between our proposed

method and the original model, we report the re-imple-

mented results of CondenseNets following https://github.

com/ShichenLiu/CondenseNet. We use the same random

seed for weight initialization when comparing Con-

denseNets and CondenseNets-elasso. To save GPU storage

16202 Neural Computing and Applications (2021) 33:16197–16212

123

https://github.com/ShichenLiu/CondenseNet
https://github.com/ShichenLiu/CondenseNet

and fit large models on one GTX 1080ti, we follow the

implementation in memory-efficient DenseNet [36]. To be

more specific, we checkpoint the learned group convolu-

tion part during training by discarding the intermediate

feature maps during the forward pass and recompute them

for the backward pass at the expense of additional training

time.

5.3 Classification results

Results on CIFAR In Table 1, we perform experiments on

CIFAR datasets to validate the effectiveness of our pro-

posed method. Concretely, we compare CondenseNet-

elasso with DenseNet, CondenseNet, interleaved group

convolution [53] and variants of ResNet and DenseNet

[3, 43, 47, 48]. We train CondenseNets and CondenseNets-

elasso 3 times and report the mean errors. First, compared

with CondenseNets, our proposed method drops classifi-

cation error rate by 0.03%, 0.08%, 0.18% and 0.12% on

CIFAR-10 and 0.52%, 0.38%, 0.25% and 0.34% on

CIFAR-100 on models of 50, 86, 122 and 182 layers,

respectively. The performance gain becomes larger on

CIFAR-10 as the model goes deeper in most cases. While

on CIFAR-100, our proposed method achieves a noticeable

0.3725% performance boost on average. Compared with

DenseNet-40-60 on CIFAR100, CondenseNet-182-elasso

achieve a 1.79% lower error rate with only 0.28x FLOPs

and 1.03x parameters.

Moreover, we apply the two recently proposed LAP [34]

and Hinge [28] methods on DenseNet for comparison.

When comparing our CondenseNet-122-elasso with LAP-

DenseNet-122-{8,16,32}, our model achieves 3.04% and

Table 1 CIFAR: Model

performance comparison

between our proposed method

and models from ResNet’s and

DenseNet’s family

Model MParams MFLOPs C-10 (%) C-100 (%)

DPN-28-10 [3] 47.80 – 3.65 20.23

ResNeXt-29(8x64d) [47] 34.40 – 3.65 17.77

MixNet-100-12 [43] 1.50 – 4.19 21.12

MixNet-250-24 [43] 29.00 – 3.32 17.06

CliqueNet-36-12 [48] 0.98 901 5.80 26.41

CliqueNet-150-30 [48] 10.02 8490 5.06 21.83

LGC-L16M32 [53] 17.70 – 3.37 19.31

LGC-L32M26 [53] 24.10 – 3.31 18.75

LAP-DenseNet-50-{8,16,32} [34] 0.26 29 7.08 29.04

LAP-DenseNet-86-{8,16,32} [34] 0.59 66 5.49 25.74

LAP-DenseNet-122-{8,16,32} [34] 1.05 117 4.98 24.57

Hinge-DenseNet-28 [28] 1.03 134 5.96 27.41

Hinge-DenseNet-28-60%pruned [28] 0.55 53.8 7.18 28.58

Hinge-DenseNet-58 [28] 4.98 637 4.75 23.64

Hinge-DenseNet-58-78%pruned [28] 1.10 140 6.08 25.39

DenseNet-100-12 [17] 0.80 293 4.51 22.27

DenseNet-40-36 [17] 1.58 651 4.58 22.30

DenseNet-40-48 [17] 2.78 1154 3.99 20.29

DenseNet-40-60 [17] 4.32 1801 4.01 19.99

CondenseNet-50* 0.26 29 5.95 27.67

CondenseNet-86* 0.59 66 5.02 23.62

CondenseNet-122* 1.05 117 4.59 21.78

CondenseNet-182* 4.45 513 3.70 18.54

CondenseNet-50-elasso* 0.26 29 5.92 ("0.03) 27.15 ("0.52)

CondenseNet-86-elasso* 0.59 66 4.94 ("0.08) 23.24 ("0.38)

CondenseNet-122-elasso* 1.05 117 4.41 ("0.18) 21.53 ("0.25)

CondenseNet-182-elasso* 4.45 513 3.58 ("0.12) 18.20 ("0.34)

MParams and MFLOPs represent parameters and FLOPs in megabytes measured on final converted models

on CIFAR-100. In model name, the first number after ‘‘-’’ represents the model depth while the second

number(if exists) after ‘‘–’’ represents the growth rate. For example, DenseNet-100-12 represents the

DenseNet with 100 layers in total and a growth rate of 12. Models with superscript * are self-implemented

and ‘‘–’’ denotes unavailable data

Neural Computing and Applications (2021) 33:16197–16212 16203

123

0.57% higher classification accuracy on CIFAR-100 and

CIFAR-10, respectively, under the same computation set-

tings. Comparing CondenseNet-122-elasso with Hinge-

DenseNet-58-78%pruned, our model achieves 3.86% and

1.67% error rate reduction on CIFAR-100 and CIFAR-10

with 84% and 95% of FLOPs and parameters. One thing to

note is that Hinge-DenseNet-58 means un-pruned Dense-

Net-58 trained by the original implementation and 78%

pruned represents 78% of FLOPs being pruned. More

detailed training settings on Hinge and LAP are described

in Appendix A. Experiment results in Table 1 show that

CondenseNets-elasso is more compute efficient.

Next, to validate the regularization effect of this

exclusive lasso term, we plot the training and validation

loss during the training process in Fig. 4. Our proposed

model converges faster and yields lower training accuracy

but higher test accuracy. This observation suggests that the

performance gain comes from less overfitting induced from

exclusive lasso regularization.

Results on tiny imageNet In Table 2, we conduct experi-

ments on a more complicated Tiny ImageNet dataset to

validate the effectiveness of our proposed method. The

results in the table show that CondenseNets-elasso drop

top-1 error rate by 0.57%, 0.45%, 0.27% and 0.51% while

drop top-5 error rate by 0.58%, 0.63%, 0.57% and 0.36%

on networks of 50, 86, 122 and 182 layers compared with

CondenseNets. Moreover, compared with DenseNet-100,

CondenseNet-122-elasso attains 1.62% lower top-1 error

with 0.9x FLOPs and 1.16x parameters. As for DenseNet-

192, CondenseNet-182-elasso achieves 0.66% lower top-1

error using 0.8x FLOPs and 1.04x parameters. When

comparing our CondenseNet-50-elasso with LAP-Dense-

Net-52-{8,16,32}, our model achieves 3.3% top-1 and

1.1% top-5 higher classification accuracy with only 62%

FLOPs and 82% parameters. Comparing CondenseNet-

122-elasso with Hinge-DenseNet-58-60%pruned, our

model achieves 4.46% top-1 and 2.2% top-5 error rate

reduction with 1.1x and 83% of FLOPs and parameters.

Next, a more detailed efficiency comparison on param-

eters and FLOPs among DenseNet, CondenseNet and

CondenseNet-elasso is shown in Fig. 5. From the figure we

can see that CondenseNet-elasso is more efficient in FLOPs

and parameters compared with DenseNet and Con-

denseNet. To sum up, our model achieves 0.1%, 0.37% and

0.54% error rate reduction on average on CIFAR10,

CIFAR100 and Tiny ImageNet, this observation shows that

the exclusive lasso regularization term performs better on

complicated datasets, which validates the regularization

effect.

5.4 Channel reuse

5.4.1 Overlap statistic

In this section, we validate our assumption that exclusive

lasso penalty encourages different groups to use different

subsets of incoming channels. The results are shown in

Fig. 6. Suppose that the total number of incoming channels

in lth layer is Cl
in and the group number is G. The set of

selected channels for gth group in layer l is denoted as

Setl;gin . OSlgm;gk denotes the overlap percentage between

group gm and group gk in lth layer and # denotes the

number of the set, namely,

OSlgm;gk ¼
#ðSetl;gmin

T
Setl;gkin Þ

Cl
in=G

ð7Þ

As a result, OSlgm;gk 2 ½0; 1�. There are
G
2

� �

pair of groups

between G groups, therefore the overlap statistic between

two groups is defined as:

OSl2 ¼ 2

GðG� 1Þ
XG

m¼1

XG

k[m

OSlgm;gk ð8Þ

Similarly, we can define overlap statistic between 3 groups

as OSl3 and 4 groups as OSl4.

In Fig. 6, three subplots represent overlap statistics in

stage1, stage2 and stage3 from left to right. Lines in dif-

ferent colors show average overlap statistics between 2, 3

and 4 groups. In this experiment, hyperparameter k is set to

1e-7, 5e-7, 1e-6 in three stages, respectively. The plot in

the figure first shows that overlap statistics in Con-

denseNets-elasso are lower than their corresponding Con-

denseNets’ counterparts in most cases. This result confirms

our assumption that the model with exclusive lasso term

tends to use more diverse input channels. Second, the gap

between the overlap statistic of CondenseNet and

Fig. 4 CIFAR100: Training and validation loss comparison of

CondenseNet-182 and CondenseNet-182-elasso. Vertical dashed lines

show the pruning epochs. The bump at epoch 300 is caused by

pruning half of the filters, model performance gets recovered soon

16204 Neural Computing and Applications (2021) 33:16197–16212

123

CondenseNet-elasso grows larger as the model goes dee-

per. One possible explanation is that we are using an

increasing k in this experiment, besides, higher-level fea-

tures are more diverse and may have an intrinsic grouping

structure.

5.4.2 Hilbert-Schmidt independence criterion

In this section, we validate our assumption that exclusive

lasso penalty encourage different convolutional groups to

learn different features. We use Hilbert-Schmidt Indepen-

dence Criterion (HSIC) [8, 23, 32] as a measurement of

similarity. HSIC was originally proposed as a test statistics

for determining whether two sets of variables are inde-

pendent. Suppose X and Y are two random variables,

HSICðX; YÞ ¼ 0 implies pðx; yÞ ¼ pðxÞpðyÞ. The empirical

estimator of HSIC is defined as

Table 2 Tiny ImageNet: Model

performance of DenseNets,

CondenseNets and

CondenseNets-elasso

Model MParams MFLOPs Top1 (%) Top5 (%)

DenseNet-52-{8,16,32} 0.74 102 41.59 18.96

DenseNet-76-{8,16,32} 0.74 102 37.68 17.45

DenseNet-88-{8,16,32} 1.68 239 39.47 18.15

DenseNet-100-{8,16,32} 2.07 285 35.74 16.19

DenseNet-192-{12,24,48} 4.54 639 32.95 14.54

LAP-DenseNet-52-{8,16,32} 0.74 102 44.47 20.32

LAP-DenseNet-88-{8,16,32} 1.68 239 41.37 18.2

Hinge-DenseNet-28 1.07 134 41.47 18.44

Hinge-DenseNet-28-53%-pruned 0.62 63 42.02 18.68

Hinge-DenseNet-58 5.08 637 38.06 17.32

Hinge-DenseNet-58-60%-pruned 2.90 255 38.58 16.97

CondenseNet-50 0.61 63 41.74 19.79

CondenseNet-86 1.37 145 36.80 16.88

CondenseNet-122 2.40 258 34.39 15.34

CondenseNet-182 4.71 513 32.80 14.16

CondenseNet-50-elasso 0.61 63 41.17("0.57) 19.21("0.58)

CondenseNet-86-elasso 1.37 145 36.35("0.45) 16.25("0.63)

CondenseNet-122-elasso 2.40 258 34.12("0.27) 14.77("0.57)

CondenseNet-182-elasso 4.71 513 32.29("0.51) 13.80("0.36)

All results are self-implemented under the same cosine learning rate schedule and data augmentation.

Results with ± are average of three runs

Fig. 5 Tiny ImageNet:

Parameters and FLOPs

comparison of DenseNets,

CondenseNets and

CondenseNets-elasso

Neural Computing and Applications (2021) 33:16197–16212 16205

123

HSICðK; LÞ ¼ 1

ðn� 1Þ2
trðKHLHÞ ð9Þ

and a normalized version of HSIC is defined as

CKAðK; LÞ ¼ HSICðK; LÞ
ffi

HSICðK;KÞHSICðL; LÞ
p ð10Þ

where Hn ¼ In � 1
n 11T represents the centering matrix.

Kij ¼ kðxi; xjÞ and Lij ¼ lðyi; yjÞ represent the kernel

matrices. In this experiment, we use the Gaussian kernel

kðxi; xjÞ ¼ expð�kxi � xjkÞ2
2=2r2 where the bandwidth r is

set to the median distance between examples [23].

In this experiment, each output convolutional filter

represents each sample, filters in different convolutional

groups are in different sets. Therefore there are O samples

in total, O/G samples in each set and each feature is of size

R. We calculate the average HSIC statistics between dif-

ferent groups on all datasets. Figure 7 shows HSIC statis-

tics between CondenseNets and CondenseNets-elasso. For

example, in CIFAR-100, HSIC statistics in CondenseNet

are lower than in CondenseNet-elasso, especially in the

third stage of the network. This may due to the reason that

k is set in an increasing manner in three stages. Similar

results can be found in CIFAR-10 and Tiny ImageNet. This

observation validates our assumption that exclusive lasso

encourage different groups to learn different features.

5.5 Hyperparameter

In this section, we describe how to choose hyperparameter

k. The training dataset can be split into two parts, 80% is

used for training while the other 20% is used for validation.

We train the model with candidate k and choose the one

with the lowest validation error. The main results (Table 1,

Table 2) are trained under the entire training dataset with

the chosen k. One thing to note is that all models are

trained under the same ‘‘training-validation’’ dataset split

for a fair comparison. We choose k in an increasing manner

in three stages since features in lower layers will be quite

generic while features in higher layers are more discrimi-

native [49, 50]. This design is in line with the ‘‘increasing

growth rate’’ in three stages. Figure 8 shows different

settings of k for CondenseNet-50-elasso on CIFAR-100.

CondenseNet-50 error in Fig. 8 shows that our model has

lower classification validation error rates even under dif-

ferent k, which validates the effectiveness of our proposed

method.

The chosen k for all experiments are set as follows. On

CIFAR dataset, k is set as {1e-7,5e-7,1e-6} on all models

except CondenseNet-182-elasso. Meanwhile, on Tiny

ImageNet dataset, k is set as {1e-7,5e-7,1e-6} on Con-

denseNet-50-elasso and is {1e-8,5e-8,1e-7} on Con-

denseNet-86-elasso and CondenseNet-122-elasso. k takes

value of {1e-8,5e-8,1e-7} on CondenseNet-182-elasso for

both datasets. Additionally, since we only have one GPU

for training, our experiment results could be improved with

further fine-tuning of k.

5.6 Group convolution comparison

In this section, we compare our model with other group

convolution variants, including DenseNet with group con-

volution and shuffle operation, DenseNet-aggregated and

Dynamic grouping convolution [55] to measure the effec-

tiveness of our proposed method. These networks are

specially designed to match parameters and FLOPs as the

baseline models. Results are shown in Table 3. All

experiments in this section are conducted on CIFAR100

with growth rate {8-16-32}. Model-52, Model-88 and

Model-124 has {8-8-8},{14-14-14} and {20-20-20} blocks

Fig. 6 CIFAR100: Overlap statistics comparison on different models. ‘‘M-50’’ represents models with 50 layers. ‘‘elasso-group-2’’ denotes

average overlap statistics between 2 groups in CondenseNets-elasso

16206 Neural Computing and Applications (2021) 33:16197–16212

123

in three stages. For a fair comparison, all models are

trained under the same training schedule and the cosine

learning rate.

CondenseNet-light We use CondenseNet-light instead of

CondenseNet as the baseline since it has a channel reduc-

tion layer in accordance with other listed models. k is set as

{1e-7,5e-7,1e-6} as previously defined. Table 3 shows that

CondenseNets-light-elasso drop classification error rate by

0.85%, 0.51% and 0.1%, respectively, compared with

CondenseNets-light. We can see model with 122 layers

does not drop the top-1 error rate as its shallower coun-

terparts. One possible reason is that the reduction layer,

which prunes out half of the filters in transition blocks, can

be seen as a regularization method and weaken the effect of

our proposed regularization term.

DenseNet-G-shuffle DenseNet-G replaces each 1 9 1

convolutional layer and the following 3 9 3 convolutional

layer in DenseNet’s block with group convolution. The

Fig. 7 HSIC statistics between

CondenseNet and CondenseNet-

elasso on CIFAR-10, CIFAR-

100 and Tiny ImageNet

Fig. 8 CIFAR100:Choosing hyperparameter k on CondenseNet-50-

elasso. The line chart shows mean error rate of three runs with

standard deviations. ‘‘CondenseNet-50 error’’ means CondenseNet-50

without exclusive lasso term where the translucent pink area shows its

standard deviation

Neural Computing and Applications (2021) 33:16197–16212 16207

123

group number is set to 4 following CondenseNet. Based on

DenseNet-G, we add a channel shuffle operation [54] after

bottleneck layers to help information flow across different

groups, the resulting model is denoted as DenseNet-G-

shuffle. Figure 9a shows its basic building block. Dense-

Net-G-shuffle has the same architecture with the converted

CondenseNet-elasso and therefore it can be seen as Con-

denseNet-elasso with a pre-defined group structure trained

from scratch.

First, we find the effectiveness of shuffle operation gets

decreased as model goes deeper. Results in Table 3 shows

that DenseNets-G-shuffle achieves 0.92%, 0.21% and

0.04% error rate reductions compared with DenseNets-G in

three models. One possible explanation is that deeper

DenseNets have more fused features therefore information

flow between convolutional groups becomes less effective.

Second, our model achieves noticeable 1.15%, 1.84% and

1.51% classification error rate reductions at networks with

Table 3 CIFAR100:

Performance comparison of

CondenseNets-light-elasso with

other DenseNet group

convolution counterparts

Model MParams MFLOPs top1 (%) Error (%) #

DenseNet-52-G 0.22 32.11 29.14 2.07

DenseNet-52-G-shuffle 0.22 32.11 28.22 1.15

DenseNet-52-aggregated 0.25 41.64 27.56 0.49

DenseNet-52-DGConv-b-4 0.51 77.85 30.71 3.64

CondenseNet-light-52 0.22 32.11 27.92 0.85

CondenseNet-light-52-elasso 0.22 32.11 27.07 –

DenseNet-88-G 0.51 74.88 25.19 2.05

DenseNet-88-G-shuffle 0.51 74.88 24.98 1.84

DenseNet-88-aggregated 0.62 97.20 24.21 1.07

DenseNet-88-DGConv-b-16 0.57 89.23 25.33 2.19

CondenseNet-light-88 0.51 74.88 23.65 0.51

CondenseNet-light-88-elasso 0.51 74.88 23.14 –

DenseNet-124-G 0.89 134.07 23.32 1.55

DenseNet-124-G-shuffle 0.89 134.07 23.28 1.51

DenseNet-124-aggregated 1.16 174.67 23.04 1.27

DenseNet-124-DGConv-b-32 1.41 238.96 22.79 1.02

CondenseNet-light-124 0.89 134.07 21.87 0.10

CondenseNet-light-124-elasso 0.89 134.07 21.77 –

The last column shows the classification error rate reduction in our proposed method with other models. In

model name, the first number after ‘‘-’’ represents the model depth. Number of convolutional group in

DenseNet-G and DenseNet-G-shuffle is set to 4. b-16 in DenseNet-88-DGConv-b-16 means complexity

hyperparameter b in DGConv is set to 16. Results of CondenseNets-light and CondenseNets-light-elasso

are average of three runs

Fig. 9 The Basic building

blocks of different network

architectures in Sect. 5.6. a
DenseNet-G-shuffle, g means

group number. b DenseNet-

aggregated, GR means growth

rate. c DenseNet-DGConv, b

controls model complexity

16208 Neural Computing and Applications (2021) 33:16197–16212

123

52, 88 and 124 layers, which confirms the validity of our

proposed method.

DenseNet-aggregated Following ResNeXt’s [47] idea, we

design a ‘‘ResNeXt-like’’ DenseNet by setting cardinality

as 2 � growthrate while the input and output channel

number is set to 8 � growthrate. This design aims to

generate models with comparable parameters and flops.

The basic building block is shown in Fig. 9b. Results in

Table 3 show that our model achieves 0.49%, 1.07% and

1.27% lower error rates compared with DenseNet-aggre-

gated with 0.88x, 0.82x and 0.76x parameters and about

0.77x FLOPS. The error rate gaps between these two sets

of models become larger as the model goes deeper.

DenseNet-DGConv Dynamic grouping convolution

(DGConv) [55] can learn optimal grouping strategy and

group number in each layer automatically through learn-

able binary relationship matrices. To compare the perfor-

mance of learned group convolution and dynamic grouping

convolution, we replace bottleneck layer in DenseNet with

DGConv. The resulting model is DenseNet-DGConv and

the basic building block is shown in Fig. 9c.

Original DGConv is inserted into ResNeXt. Here, we

make a small modification to apply DGConv to Con-

denseNet. Suppose the input channel number is Cl
in and the

output channel number is Cl
out in lth layer. Relationship

matrix U is a Kronecker product of a 2 9 2 matrices,

therefore Cl
in and Cl

out are the power of 2 by default. In

DenseNet, Cl
out equals {32, 64, 128} in three stages, which

meets this prerequisite. In ResNeXt, Cl
in equals Cl

out by

default, while in DenseNet, Cl
in �Cl

out in most blocks. This

case is implemented by a variation of GroupDown method

in the appendix of the paper. Specifically, suppose

Cl
in ¼ r � Cl

out þ m, where r is an integer, we first construct

~Ul 2 f0; 1gC
l
out�Cl

out . The relationship matrix Ul can be

computed as:

Ul ¼ ~Ild
~Ul; ~Ild ¼ ½Ilout; :::; Ilout; Ilm� ð11Þ

where ~Ild 2 f0; 1gC
l
in�Cl

out is a matrix concatenated by

identity matrices Ilout 2 f0; 1gC
l
out�Cl

out and the remainder

Ilm ¼ Ilout½: m; :; :; :�, which truncates the first m filters in

Ilout. When Cl
in\Cl

out, we use standard group convolutions

with a group number of 4. Parameters and FLOPs of

DenseNet-DGConv are calculated through the ‘‘gate’’

parameters in the final model, which is equivalent to a

pruning ratio taking values from 1=2n (n is a positive

integer). The hyperparameter for measuring model com-

plexity in this paper is denoted as b. We tried different

model complexity settings of ‘‘b’’ from 2, 4, 8, 16 and 32,

and pick the one with comparable parameters and FLOPs

with CondenseNet-elasso. Results in Table 3 shows that

CondenseNets-elasso achieves 3.64%, 2.19% and 1.02%

smaller error rate compared with its DenseNet-DGConv

counterparts with 0.43x, 0.89x and 0.63x parameters and

0.41x, 0.84x and 0.56x FLOPs.

5.7 Discussion

In this section, we conduct experiments to validate the

effectiveness of our proposed method. First, Sect. 5.3

presents our main results on CIFAR-100, CIFAR-10 and

Tiny ImageNet, as long as a Param/FLOPs comparison

between different models. Section 5.5 analysis how we

choose hyperparameter k. Second, in Sect. 5.4, we validate

our assumption that exclusive lasso encourage different

convolutional groups to use different subsets of input

channels through overlap statistic and learn more diversi-

fied features through HSIC statistic. Third, we compare our

proposed method with group convolution variants in Sect.

5.6, such as the effect of the shuffle operation, increasing

cardinality and dynamic grouping convolutional, which are

designed to learn more efficient group convolutions. All the

evaluated methods are not as efficient as CondenseNet-

elasso under similar computation settings, which validates

the effectiveness of our proposed method.

Our method applies to scenarios where the network

backbone is DenseNet or stacks of Dense blocks, especially

deep convolutional networks. Still, there may be some

possible limitations in this study: our proposed approach

assumes that diversified features help to boost the perfor-

mance. There are some other works [4, 58] on decorrelat-

ing features in neural networks. Experiment results show

that our model outperforms other reported methods with

more diversified features in Figs. 7 and 6; however, this

assumption needs to be further validated and explored. If

this assumption holds, designing new methods to decorre-

late features in neural networks can help to build compact

models and saves computation.

6 Conclusion

In this paper, we insert the exclusive lasso penalty to

CondenseNet to encourage different convolution groups to

learn less correlated features. In our experiments, Con-

denseNets-elasso achieves a noticeable performance boost

compared with CondenseNets and other group convolution

variants under similar computation budget on three public

datasets. Experiment results validate our assumption that

the regularizer helps different groups to use different sub-

sets of incoming channels and to learn more diversified

features.

Neural Computing and Applications (2021) 33:16197–16212 16209

123

Appendix A: Experiment settings
for compared models

LAP Lookahead pruning (LAP) [34] prunes redundant

neurons or filters through a lookahead distortion by con-

sidering its neighboring layers. In this set of experiments,

we use DenseNet as the baseline model and the pruned

version is denoted as LAP-DenseNet. For CondenseNet-

elasso, the pruning ratios for all 1 9 1 convolutional layers

are 75% and the final fully connected layer is 50%. All

3 9 3 convolutional layers are group convolutional with

group number 4 (except the initial convolutional layer),

which is equivalent to prune 75% of filters. Therefore, we

prune LAP-DenseNets under the same setting. Besides, we

do not include convolutional layers inside transition blocks,

same as that in CondenseNets-elasso. Training steps for

pre-training and retraining are [120 k,40 k] for CIFAR and

[80 k, 26 k] for Tiny ImageNet. Preliminary experiment

results show that the cosine learning rate performs better

than the fixed learning rate schedule, therefore, we use a

cosine learning rate schedule starting from 0.1 and gradu-

ally reduces to 0. We test LAP-DenseNet with 50, 86 and

122 layers on CIFAR and LAP-DenseNet with 52 and 88

layers on Tiny ImageNet. Experiment results in Tables 1

and 2 show that our model performs better than lookahead

pruning on DenseNet.

Hinge Hinge (Hinge) [28] provides a way to compress the

whole network together at a given target FLOPs com-

pression ratio. The original heavyweight convolution is

converted to a lightweight convolution and a linear pro-

jection. For example, in basic building block in DenseNet

(shown in Fig. 2a), one 1 9 1 convolution is added after

each 3x3 convolution to select important output filters.

Group sparsity is added by introducing a sparsity-inducing

matrix, such as L1 norm or L1=2 norm and the matrix is

optimized through proximal gradient descent. In this set of

experiments, we follow the original implementation of

Hinge https://github.com/ofsoundof/group_sparsity, the

resulting unpruned model is denoted as Hinge-DenseNet

while the pruned model is denoted as Hinge-DenseNet-

pruned. The target FLOPs pruning ratio is selected to be

comparable to our baseline models. The model configura-

tion is set as follows: Hinge-DenseNet-28 has {8,8,8}

dense blocks in each stage, Hinge-DenseNet-58 has

{18,18,18} dense blocks in each stage, and the growth rate

is set to {8,16,32}. The searching epochs and converging

epochs are set to 200 and 300, respectively. Experiment

results in Table 1 and Table 2 show that our model per-

forms better than Hinge-DenseNet under similar compu-

tation settings.

Appendix B: Covid-19 X-ray images
classification

In this section, we evaluate our proposed model on Covid-

19 X-Ray images. The dataset COVID-Xray-5k is con-

structed from paper DeepCovid [33] whose training dataset

is composed of 2000 non-covid examples and 84 covid

examples while the validation dataset is composed of 3000

non-covid examples and 100 non-covid examples. [33] use

the pre-trained model on ImageNet2012 and use transfer

learning to fine-tune the neural networks on the training

images of the COVID-Xray-5k dataset. The models predict

a probability score for each image and a threshold is

selected and any sample with probability higher than the

threshold is considered as COVID-19. The paper uses the

following two metrics to report the model performance:

Sensitivity ¼
Number of Images correctly predicted as COVID-19

Number of Total COVID Images

Specificity ¼
Number of Images correctly predicte as Non-COVID

Number Total Non-COVID Images

In this example, following the training schedule from

DeepCovid, we first train the models on ImageNet2012 and

use transfer learning to retrain the last fully connected

layers from 1000 classes to classes(covid and non-covid).

We train three models for comparison: DenseNet-G, Con-

denseNet and CondenseNet-elasso, all models have

{4,6,8,10,8} dense blocks in each stage and the growth rate

is set to {8,16,32,64,128}. The pre-trained models are

validated on the whole ImageNet2012 validation dataset,

the result is shown in Table 4. Our model achieves 4.23%

and 0.42% higher top-1 error rate compared with Dense-

Net-G and CondenseNet-elasso under the same computa-

tion settings. At transferring stage, we use a learning rate of

0.0005 for CondenseNet and DenseNet-G and 0.001 for

DenseNet-G. The sensitivity and specificity under different

threshold levels are shown in Table 5. Table 5 shows that

our proposed CondeseNet-elasso achieves much higher

sensitivity and comparable specificity compared with

DenseNet-G and CondenseNet. Both experiment results on

ImageNet2012 classification task and Covid-19 X-ray

Table 4 10%-ImageNet Classification Error rate

Model Top-1 (%) Top-5 (%)

DenseNet-74-G 51.13 27.12

CondenseNet-74 47.32 23.83

CondenseNet-elasso 46.90 23.54

16210 Neural Computing and Applications (2021) 33:16197–16212

123

https://github.com/ofsoundof/group_sparsity

image classification show that our model performs better

than its baseline CondenseNet and DenseNet-G.

Acknowledgements The authors are supported by the National Nat-

ural Science Foundation of China (Nos. 61976174, 11671317).

Declarations

Conflict of interest The authors declare that they have no conflict of

interest. This article does not contain any studies with human par-

ticipants or animals performed by any of the authors.

References

1. Campbell F, Allen GI et al (2017) Within group variable selection

through the exclusive lasso. Electron J Statist 11(2):4220–4257

2. Changpinyo S, Sandler M, Zhmoginov A (2017) The power of

sparsity in convolutional neural networks. arXiv preprint

arXiv:1702.06257

3. Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J (2017) Dual path

networks. In: Guyon I, Luxburg UV, Bengio S, Wallach H,

Fergus R, Vishwanathan S, Garnett R (eds) Advances in neural

information processing systems, vol 30. Curran Associates Inc,

pp. 4467–4475. https://proceedings.neurips.cc/paper/2017/file/

f7e0b956540676a129760a3eae309294-Paper.pdf

4. Cogswell M, Ahmed F, Girshick R, Zitnick L, Batra D (2015)

Reducing overfitting in deep networks by decorrelating repre-

sentations. arXiv preprint arXiv:1511.06068

5. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima-

genet: A large-scale hierarchical image database. In: 2009 IEEE

conference on computer vision and pattern recognition,

pp. 248–255. Ieee

6. Denil M, Shakibi B, Dinh L, Ranzato M, De Freitas N (2013)

Predicting parameters in deep learning. In: Burges CJC, Bottou L,

Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in

neural information processing systems, vol 26, Curran Associ-

ates, Inc., pp. 2148–2156. https://proceedings.neurips.cc/paper/

2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf

7. Dong W, Wu J, Bai Z, Hu Y, Li W, Qiao W, Woźniak M (2021)

Mobilegcn applied to low-dimensional node feature learning.

Pattern Recognit 112:107788

8. Gretton A, Bousquet O, Smola A, Schölkopf B (2005) Measuring

statistical dependence with hilbert-schmidt norms. In: Interna-

tional conference on algorithmic learning theory, pp. 63–77.

Springer

9. Guo Q, Wu XJ, Kittler J, Feng Z (2020) Self-grouping convo-

lutional neural networks. Neural Netw 132:491–505

10. Han S, Pool J, Tran J, Dally W (2015) Learning both weights and

connections for efficient neural network. In: Cortes C, Lawrence

N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural

information processing systems, vol 28. Curran Associates, Inc.,

pp. 1135–1143. https://proceedings.neurips.cc/paper/2015/file/

ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf

11. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification.

In: Proceedings of the IEEE international conference on com-

puter vision, pp. 1026–1034

12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 770–778

13. He Y, Kang G, Dong X, Fu Y, Yang Y (2018) Soft filter pruning

for accelerating deep convolutional neural networks. arXiv pre-

print arXiv:1808.06866

14. Hu H, Dey D, Del Giorno A, Hebert M, Bagnell JA (2017) Log-

densenet: How to sparsify a densenet. arXiv preprint

arXiv:1711.00002

15. Hu H, Peng R, Tai YW, Tang CK (2016) Network trimming: A

data-driven neuron pruning approach towards efficient deep

architectures. arXiv preprint arXiv:1607.03250

16. Huang G, Liu S, Van der Maaten L, Weinberger KQ (2018)

Condensenet: An efficient densenet using learned group convo-

lutions. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 2752–2761

17. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017)

Densely connected convolutional networks. In: Proceedings of

the IEEE conference on computer vision and pattern recognition,

pp. 4700–4708

18. Ioannou Y, Robertson D, Cipolla R, Criminisi A (2017) Deep

roots: Improving cnn efficiency with hierarchical filter groups. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 1231–1240

19. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv

preprint arXiv:1502.03167

20. Jiang F, Grigorev A, Rho S, Tian Z, Fu Y, Jifara W, Adil K, Liu S

(2018) Medical image semantic segmentation based on deep

learning. Neural Comput Appl 29(5):1257–1265

21. Ke Q, Zhang J, Wei W, Połap D, Woźniak M, Kośmider L,

Damaševı̌cius R (2019) A neuro-heuristic approach for recogni-

tion of lung diseases from x-ray images. Expert Syst Appl

126:218–232

22. Kong D, Fujimaki R, Liu J, Nie F, Ding C (2014) Exclusive

feature learning on arbitrary structures via ‘1;2 -norm. Adv Neural

Inf Process Syst 27:1655–1663

23. Kornblith S, Norouzi M, Lee H, Hinton G (2019) Similarity of

neural network representations revisited. arXiv preprint

arXiv:1905.00414

24. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of

features from tiny images. Tech. rep, Citeseer

25. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. In: Pereira F,

Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural

information processing systems, vol 25. Curran Associates, Inc.,

Table 5 Sensitivity and Specificity on Covid-19 X-Ray Images

Model Threshold Sensitivity Specificity

DenseNet-74-G 0.2 0.85 0.998

CondenseNet-74 0.2 0.81 1.000

CondenseNet-elasso 0.2 0.92 0.978

DenseNet-74-G 0.3 0.79 0.998

CondenseNet-74 0.3 0.77 1.000

CondenseNet-elasso 0.3 0.90 0.990

DenseNet-74-G 0.4 0.75 0.999

CondenseNet-74 0.4 0.73 1.000

CondenseNet-elasso 0.4 0.86 0.995

DenseNet-74-G 0.5 0.72 0.999

CondenseNet-74 0.5 0.67 1.000

CondenseNet-elasso 0.5 0.80 0.999

Neural Computing and Applications (2021) 33:16197–16212 16211

123

https://proceedings.neurips.cc/paper/2017/file/f7e0b956540676a129760a3eae309294-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f7e0b956540676a129760a3eae309294-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf

pp. 1097–1105. https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

26. Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2016) Pruning

filters for efficient convnets. arXiv preprint arXiv:1608.08710

27. Li X, Chen S, Hu X, Yang J (2019) Understanding the dishar-

mony between dropout and batch normalization by variance shift.

In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 2682–2690

28. Li Y, Gu S, Mayer C, Gool LV, Timofte R (2020) Group sparsity:

The hinge between filter pruning and decomposition for network

compression. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 8018–8027

29. Long J, Shelhamer E, Darrell T(2015) Fully convolutional net-

works for semantic segmentation. In: Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 3431–3440

30. Loshchilov I, Hutter F(2016) Sgdr: Stochastic gradient descent

with warm restarts. arXiv preprint arXiv:1608.03983

31. Luo JH, Wu J, Lin W (2017) Thinet: A filter level pruning

method for deep neural network compression. In: Proceedings of

the IEEE international conference on computer vision,

pp. 5058–5066

32. Ma KWD, Lewis J, Kleijn WB (2020) The hsic bottleneck: Deep

learning without back-propagation. Proc AAAI Conf Artif Intell

34(4):5085–5092. https://doi.org/10.1609/aaai.v34i04.5950

33. Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ (2020) Deep-

covid: Predicting covid-19 from chest x-ray images using deep

transfer learning. Med Image Anal 65:101794

34. Park S, Lee J, Mo S, Shin J (2020) Lookahead: A far-sighted

alternative of magnitude-based pruning. In: International Con-

ference on Learning Representations. https://openreview.net/for

um?id=ryl3ygHYDB

35. Peng, B., Tan, W., Li, Z., Zhang, S., Xie, D., Pu, S.: Extreme

network compression via filter group approximation. In: Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pp. 300–316 (2018)

36. Pleiss G, Chen D, Huang G, Li T, van der Maaten L, Weinberger

KQ (2017) Memory-efficient implementation of densenets. arXiv

preprint arXiv:1707.06990

37. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only

look once: Unified, real-time object detection. In: Proceedings of

the IEEE conference on computer vision and pattern recognition,

pp. 779–788

38. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-

time object detection with region proposal networks. In: Cortes C,

Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in

neural information processing systems, vol 28. Curran Associ-

ates, Inc., pp. 91–99. https://proceedings.neurips.cc/paper/2015/

file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

39. Scardapane S, Comminiello D, Hussain A, Uncini A (2017)

Group sparse regularization for deep neural networks. Neuro-

computing 241:81–89

40. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv preprint

arXiv:1409.1556

41. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-

nov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(1):1929–1958

42. Wan L, Zeiler M, Zhang S, Le Cun Y, Fergus R (2013) Regu-

larization of neural networks using dropconnect. In: International

Conference on Machine Learning, pp. 1058–1066

43. Wang W, Li X, Yang J, Lu T (2018) Mixed link networks. arXiv

preprint arXiv:1802.01808

44. Wang X, Kan M, Shan S, Chen X (2019) Fully learnable group

convolution for acceleration of deep neural networks. In: Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition, pp. 9049–9058

45. Wen W, Wu C, Wang Y, Chen Y, Li H (2016) Learning struc-

tured sparsity in deep neural networks. In: Lee D, Sugiyama M,

Luxburg U, Guyon I, Garnett R (eds) Advances in neural infor-

mation processing systems, vol 29. Curran Associates, Inc.,

pp. 2074–2082. https://proceedings.neurips.cc/paper/2016/file/

41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf

46. Woźniak M, Wieczorek M, Siłka J, Połap D (2020) Body pose

prediction based on motion sensor data and recurrent neural

network. IEEE Trans Ind Inf 17(3):2101–2111

47. Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated

residual transformations for deep neural networks. In: Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pp. 1492–1500

48. Yang Y, Zhong Z, Shen T, Lin Z (2018) Convolutional neural

networks with alternately updated clique. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition,

pp. 2413–2422

49. Ye J, Lu X, Lin Z, Wang JZ (2018) Rethinking the smaller-norm-

less-informative assumption in channel pruning of convolution

layers. arXiv preprint arXiv:1802.00124

50. Yoon J, Hwang SJ (2017) Combined group and exclusive sparsity

for deep neural networks. In: Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70,

pp. 3958–3966. JMLR. org

51. Yu R, Li A, Chen CF, Lai JH, Morariu VI, Han X, Gao M, Lin

CY, Davis LS (2018) Nisp: Pruning networks using neuron

importance score propagation. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 9194–9203

52. Zhang D, Wang H, Figueiredo M, Balzano L (2018) Learning to

share: Simultaneous parameter tying and sparsification in deep

learning. In: International Conference on Learning Representa-

tions. https://openreview.net/forum?id=rypT3fb0b

53. Zhang T, Qi GJ, Xiao B, Wang J (2017) Interleaved group

convolutions. In: Proceedings of the IEEE International Confer-

ence on Computer Vision, pp. 4373–4382

54. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely

efficient convolutional neural network for mobile devices. In:

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 6848–6856

55. Zhang Z, Li J, Shao W, Peng Z, Zhang R, Wang X, Luo P (2019)
Differentiable learning-to-group channels via groupable convo-

lutional neural networks. In: Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pp. 3542–3551

56. Zhou Y, Jin R, Hoi SCH (2010) Exclusive lasso for multi-task

feature selection. In: Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, pp. 988–995

57. Zhu L, Deng R, Maire M, Deng Z, Mori G, Tan P (2018) Sparsely

aggregated convolutional networks. In: Proceedings of the

European Conference on Computer Vision (ECCV), pp 186–201

58. Zhu X, Zhou W, Li H (2018) Improving deep neural network

sparsity through decorrelation regularization. In: International

Joint Conference on Artificial Intelligence, pp 3264–3270

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

16212 Neural Computing and Applications (2021) 33:16197–16212

123

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1609/aaai.v34i04.5950
https://openreview.net/forum?id=ryl3ygHYDB
https://openreview.net/forum?id=ryl3ygHYDB
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://openreview.net/forum?id=rypT3fb0b

	CondenseNet with exclusive lasso regularization
	Abstract
	Introduction
	Related work
	DenseNet and CondenseNet
	DenseNet
	CondenseNet

	CondenseNet with exclusive lasso regularizer
	Experiments
	Datasets
	Training
	Classification results
	Channel reuse
	Overlap statistic
	Hilbert-Schmidt independence criterion

	Hyperparameter
	Group convolution comparison
	Discussion

	Conclusion
	Appendix A: Experiment settings for compared models
	Appendix B: Covid-19 X-ray images classification
	Acknowledgements
	References

