Skip to main content
Log in

Interval type-2 fuzzy neural network based constrained GPC for NH\(_{3}\) flow in SCR de-NO\(_{x}\) process

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To overcome the difficulty of controlling ammonia (NH\(_{3}\)) flow in the selective catalytic reduction (SCR) nitrogen oxides (NO\(_{x}\)) decomposition (de-NO\(_{x}\)) process with time delay, modeling uncertainties and time-varying parameters, a constrained generalized predictive control (GPC) based on interval type-2 fuzzy neural network (IT2FNN) is proposed in this paper. First, the proportional-integral (PI) controller cannot solve the time delay in the SCR de-NO\(_x\) process due to long de-NO\(_x\) reaction time, therefore this paper proposes a constrained GPC controller to predict the multistep outlet NO\(_x\) concentration, where the predictive time domain is greater than the time delay. Second, an accurate process model used in GPC plays an important role in NO\(_{x}\) control. Thus, this paper designs a novel IT2FNN model as the SCR de-NO\(_{x}\) process model. IT2FNN which adopts interval type-2 fuzzy set (IT2FS) could deal with the modeling uncertainties owing to catalyst activity, uniformity of flue gas and other factors. Meanwhile, to cope with the time-varying parameters because of the fluctuation of load, the parameters of the proposed IT2FNN are updated by the derived algorithms in real time. For reducing computational complexity, this paper adopts the Nie–Tan (NT)-type reduction (TR) operation instead of the Karnik–Mendel (KM) method. Third, under the proposed control scheme, it is theoretically proved that the SCR de-NO\(_{x}\) system is stable. Finally, the comparative simulations are given to demonstrate the effectiveness and superiorities of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

NH\(_{3}\) :

Ammonia

SCR:

Selective catalytic reduction

NO\(_{x}\) :

Nitrogen oxides

de-NO\(_{x}\) :

NO\(_{x}\) decomposition

GPC:

Generalized predictive control

IT2FNN:

Interval type-2 fuzzy neural network

PI:

Proportional-integral

IT2FS:

Interval type-2 fuzzy set

NT:

Nie–Tan

TR:

Type Reduction

KM:

Karnik–Mendel

MPC:

Model predictive control

RBF:

Radial basis function

ARX:

Autoregressive with exogenous

T2FS:

Type-2 fuzzy set

T2FLS:

Type-2 fuzzy logic system

T1FS:

Type-1 fuzzy set

FOU:

Footprint of uncertainty

GT2FS:

Generalized type-2 fuzzy set

GD:

Gradient descent

RLS:

Recursive least square

NARX:

Nonlinear autoregressive with exogenous

UMF:

Upper membership function

LMF:

Lower membership function

RBFNN:

Radial basis function neural network

PDF:

Probability density function

IAE:

Integrated absolute error

RMSE:

Root mean square error

MAE:

Mean absolute error

References

  1. Wang G, Deng J, Zhang Y, Zhang Q, Duan L, Hao J, Jiang J (2020) Air pollutant emissions from coal-fired power plants in China over the past two decades. Sci Total Environ 74:140326

    Article  Google Scholar 

  2. Gu M, Wang M, Chen X, Wang J, Lin Y, Chu H (2019) Numerical study on the effect of separated over-fire air ratio on combustion characteristics and \(\rm NO_{x}\) emission in a 1000MW supercritical \(\rm CO_{2}\) boiler. Energy 175:593–603

    Article  Google Scholar 

  3. Li Z, Jiang J, Ma Z, Wang S, Duan L (2015) Effect of selective catalytic reduction(SCR) on fine particle emission from two coal-fired power plants in China. Atmos Environ 120:227–233

    Article  Google Scholar 

  4. Liu X, Tan H, Wang Y, Mikulčić H, Vujanović M, Duić N (2018) Low NO\(_{x}\) combustion and SCR flow field optimization in a low volatile coal fired boiler. J Environ Manage 220:30–35

    Article  Google Scholar 

  5. Liu G, Bao W, Zhang W, Shen D, Wang Q, Li C, Luo KH (2019) An intelligent control of NH\(_{3}\) injection for optimizing the NO\(_{x}\)/NH\(_{3}\) ratio in SCR system. J Energy Inst 92(5):1262–1269

    Article  Google Scholar 

  6. Wu X, Shen J, Sun S, Li Y, Lee K (2016) Data-driven disturbance rejection predictive control for SCR denitrification system. Ind Eng Chem Res 55(20):5923–5930

    Article  Google Scholar 

  7. Liu G, Cui Y, Ji J, Shen D, Wang Q, Li C, Luo KH (2019) A technical method to improve NO\(_{x}\)/NH\(_{3}\) mixing ratio in SCR system and its engineering applications. J Energy Inst 92(6):1757–1764

    Article  Google Scholar 

  8. Muzio L, Bogseth S, Himes R, Chien Y-C, Dunn-Rankin D (2017) Ammonium bisulfate formation and reduced load SCR operation. Fuel 206:180–189

    Article  Google Scholar 

  9. Chen H, Pan P, Shao H, Wang Y, Zhao Q (2017) Corrosion and viscous ash deposition of a rotary air preheater in a coal-fired power plant. Appl Therm Eng 113:373–385

    Article  Google Scholar 

  10. Panahi PN, Niaei A, Tseng H-H, Salari D, Mousavi SM (2015) Modeling of catalyst composition-activity relationship of supported catalysts in NH\(_{3}\)-NO-SCR process using artificial neural network. Neural Comput Appl 26(7):1515–1523

    Article  Google Scholar 

  11. Zhang S, Tian F, Ren G, Yang L (2012) CR control strategy based on ANNs and Fuzzy PID in a heavy-duty diesel engine. Int J Automot Technol 13:693–699

    Article  Google Scholar 

  12. Zhang K, Zhao J, Zhu Y (2018) MPC case study on a selective catalytic reduction in a power plant. J Process Control 62:1–10

    Article  Google Scholar 

  13. Nakamoto M, Kokubo T, Kamito A, Shimizu K (2002) Cascade control using GPC and LQR for a \(\rm NO_{x}\) reduction process of a thermal power plant. Trans Soc Inst Control Eng E–2(1):98–107

    Google Scholar 

  14. Zhang Y, Shen J, Li Y, Wu X (2015) Cascade constrained DMC-PID control for SCR denitrification System. In: Proceedings of the 34th Chinese control conference, Hangzhou

  15. Peng H, Ozaki T, Toyoda Y (2004) RBF-ARX model-based nonlinear system modeling and predictive control with application to a NO\(_{x}\) decomposition process. Control Eng Pract 12(2):191–203

    Article  Google Scholar 

  16. Peng H, Gui W, Shioya H (2006) A predictive control strategy for nonlinear NO\(_{x}\) decomposition process in thermal power plants. IEEE Trans Syst Man Cybern Syst Humans 36(5):904–921

    Article  Google Scholar 

  17. Pakravesh H, Aksikas I, Votsmeier M, Dubljevic S, Hayes RE, Forbes F (2016) Characteristics-based model predictive control of selective catalytic reduction in diesel-powered vehicles. J Process Control 47:98–110

    Article  Google Scholar 

  18. Herman A, Wu M, Cabush D, Shost M (2009) Model based control of SCR dosingand OBD strategies with feedback from NH\(_{3}\) sensors. SAE Int J Fuels Lubr 2(1):375–385

    Article  Google Scholar 

  19. Mayne DQ (2014) Model predictive control: recent developments and future promise. Automatica 50(12):2967–2986

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang Y, Wang H, Khajepour A, He H, Ji J (2017) Model predictive control power management strategies for HEVs: a review. J Power Sour 341(15):91–106

    Article  Google Scholar 

  21. Han H, Qiao J (2014) Nonlinear model-predictive control for industrial processes an application to wastewater treatment process. IEEE Trans Ind Electron 61(4):1970–1982

    Article  Google Scholar 

  22. He W, Zhang H, Chen Z, Chu B, Cao K, Shan B, Chen R (2015) Generalized predictive control of temperature on an atomic layer deposition reactor. IEEE Trans Contr Syst T 23(6):2408–2415

    Article  Google Scholar 

  23. Xie S, Xie Y, Huang T, Gui W, Yang C (2019) Generalized predictive control for industrial processes based on neuron adaptive splitting and merging RBF neural network. IEEE Trans Ind Electron 66(2):1192–1202

    Article  Google Scholar 

  24. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  25. Wu D (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848

    Article  Google Scholar 

  26. Mendel JM (2007) Type-2 fuzzy sets and systems: an overview. IEEE Comput Intell M 2(1):20–29

    Article  Google Scholar 

  27. Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  28. Gamasaee R, Zarandi MHF (2017) Dynamic Type-2 fuzzy dependent dirichlet regression mixture clustering model. Appl Soft Comput 57:577–604

    Article  Google Scholar 

  29. Eyoh I, John RI, Maere GD, Kayacan E (2018) Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems. IEEE Trans Fuzzy Syst 26(5):2672–2685

    Article  Google Scholar 

  30. Zarandi MHF, Soltanzadeh S, Mohammadi A, Castillo O (2019) Designing a general type-2 fuzzy expert system for diagnosis of depression. Appl Soft Comput 80:329–341

    Article  Google Scholar 

  31. Türk S, Deveci M, Özcan E, Canítez F, John R (2021) Interval type-2 fuzzy sets improved by simulated annealing for locating the electric charging stations. Inf Sci 547:641–666

    Article  MathSciNet  Google Scholar 

  32. Lin CM, La VH, Le TL (2020) DC-DC converters design using a type-2 wavelet fuzzy cerebellar model articulation controller. Neural Comput Appl 32:2217–2229

    Article  Google Scholar 

  33. Antonelli M, Bernardo D, Hagras H, Marcelloni F (2017) Multiobjective evolutionary optimization of type-2 fuzzy rule-based systems for financial data classification. IEEE Trans Fuzzy Syst 25(2):249–264

    Article  Google Scholar 

  34. Zhang H, Wang Y, Wang D, Wang Y (2020) Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system. Inf Sci 511:1–17

    Article  MathSciNet  MATH  Google Scholar 

  35. Eshghi A, Mousavi SM, Mohagheghi V (2019) A new interval type-2 fuzzy approach for analyzing and monitoring the performance of megaprojects based on earned value analysis (with a case study). Neural Comput Appl 31:5109–5133

    Article  Google Scholar 

  36. Mohagheghi V, Mousavi SM, Vahdani B (2017) Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Comput Appl 28:3393–3411

    Article  Google Scholar 

  37. Mohagheghi V, Mousavi SM (2019) An analysis approach to handle uncertain multi-criteria group decision problems in the framework of interval type-2 fuzzy sets theory. Neural Comput Appl 31:3543–3557

    Article  Google Scholar 

  38. Moreno JE, Sanchez MA, Mendoza O, Antonio Rodríguez-Diaz, Castillo O, Melin P, Castro JR (2020) Design of an interval type-2 fuzzy model with justifiable uncertainty. Inf Sci 513:206–221

    Article  Google Scholar 

  39. Mendel JM (2014) General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans Fuzzy Sys 22(5):1162–1182

    Article  Google Scholar 

  40. Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  41. Wu D (2013) Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans Fuzzy Syst 21(1):80–99

    Article  Google Scholar 

  42. Lin F-J, Chou P-H (2009) Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network. IEEE Trans Ind Electron 56(1):178–193

    Article  Google Scholar 

  43. Chen C-S, Lin W-C (2011) Self-adaptive interval type-2 neural fuzzy network control for PMLSM drives. Expert Syst Appl 38(12):14679–14689

    Article  Google Scholar 

  44. Chang Y, Chan W-S (2014) Adaptive dynamic surface control for uncertain nonlinear systems with interval type-2 fuzzy neural networks. IEEE Trans Cybern 44(2):293–304

    Article  Google Scholar 

  45. Soto J, Melin P, Castillo O (2018) A new approach for time series prediction using ensembles of IT2FNN models with optimization of fuzzy integrators. Int J Fuzzy Syst 20:701–728

    Article  MathSciNet  Google Scholar 

  46. Zhan T, Li P, Cao J (2019) Self-organising interval type-2 fuzzy neural network with asymmetric membership functions and its application. Soft Comput 23:7215–7228

    Article  Google Scholar 

  47. Juang C-F, Tsao Y-W (2008) A self-evolving interval type-2 fuzzy neural network with online structure. IEEE Trans Fuzzy Syst 16(6):1411–1424

    Article  Google Scholar 

  48. Lin Y-Y, Chang J-Y, Lin C-T (2014) A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications. IEEE Trans Ind Electron 61(1):447–459

    Article  Google Scholar 

  49. Lin C-T, Pal NR, Wu S-L, Liu Y-T, Lin Y-Y (2015) An interval type-2 neural fuzzy system for online system identification and feature elimination. IEEE Trans Neural Netw Learn Syst 26(7):1442–1455

    Article  MathSciNet  Google Scholar 

  50. Wu H, Mendel JM (2002) Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 10(5):622–639

    Article  Google Scholar 

  51. Nie M, Tan WW (2008) Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: Proceedings IEEE international conference on fuzzy systems, pp. 1425–1432

  52. Wu D, Tan WW (2005) Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller. In: Proceedings IEEE international conference on fuzzy systems, pp. 353–358

  53. Wu D, Mendel JM (2019) Recommendations on designing practical interval type-2 fuzzy systems. Eng Appl Artif Intel 85:182–193

    Article  Google Scholar 

  54. Runkler TA, Chen C, John R (2018) Type reduction operators for interval type-2 defuzzification. Inf Sci 467:464–476

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang H, Ji Y, Huang W, Liu L (2019) Sitcom-star-based clothing retrieval for video advertising: a deep learning framework. Neural Comput Appl 31:7361–7380

    Article  Google Scholar 

  56. Zhang H, Sun Y, Liu L, Wang X, Li L, Liu W (2020) ClothingOut: a category-supervised GAN model for clothing segmentation and retrieval. Neural Comput Appl 32:4519–4530

    Article  Google Scholar 

  57. Castillo O, Castro JR, Melin P, Rodriguez-Diaz A (2013) Universal approximation of a class of interval type-2 fuzzy neural networks in nonlinear identification. Adv Fuzzy Syst 2013:1–16

    Article  MathSciNet  MATH  Google Scholar 

  58. Castro JR, Castillo O, Melin P, Rodriguez-Diaz A (2009) A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf Sci 179(13):2175–2193

    Article  MATH  Google Scholar 

  59. Castillo O, Castro JR, Melin P, Rodriguez-Diaz A (2014) Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput 18:1213–1224

    Article  Google Scholar 

  60. Kayacan E, Kayacan E, Khanesar MA (2015) Identification of nonlinear dynamic systems using type-2 fuzzy neural networks–a novel learning algorithm and a comparative study. IEEE Trans Ind Electron 62(3):1716–1724

    Article  MATH  Google Scholar 

  61. Lin C-M, Le T-L, Huynh T-T (2018) Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 275:2239–2250

    Article  Google Scholar 

  62. Han M, Zhong K, Qiu T, Han B (2019) Interval type-2 fuzzy neural networks for chaotic time series prediction: a concise overview. IEEE Trans Cybern 49(7):2720–2731

    Article  Google Scholar 

  63. Mohammadzadeh A, Kayacan E (2019) A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high dimensional applications. Neurocomputing 338:63–71

    Article  Google Scholar 

  64. Camacho EF, Bordóns C (2007) Model predictive control. Springer, London

    Book  MATH  Google Scholar 

  65. Gao Y, Er MJ (2005) NARMAX Time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Set Syst 150:331–350

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhao J, Lin CM (2019) Wavelet-TSK-type fuzzy cerebellar model neural network for uncertain nonlinear systems. IEEE Trans Fuzzy Syst 27(3):549–558

    Article  Google Scholar 

  67. Eliasi H, Davilu H, Menhaj MB (2007) Adaptive fuzzy model based predictive control of nuclear steam generators. Nucl Eng Des 237:668–676

    Article  Google Scholar 

  68. Peng H, Wu J, Inoussa G, Deng QL, Nakano K (2009) Nonlinear system modeling and predictive control using the RBF netsbased quasi-linear ARX model. Control Eng Pract 17:59–66

    Article  Google Scholar 

  69. Camacho EF (1993) Constrained generalized predictive control. IEEE Trans Autom Control 38(2):327–332

    Article  MathSciNet  MATH  Google Scholar 

  70. Xiao H, Chen CLP (2019) Incremental updating multirobot formation using nonlinear model predictive control method with general projection neural network. IEEE Trans Ind Electron 66(6):4502–4512

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Grant No.51775103) and the State Key Lab of Digital Manufacturing Equipment Technology (Grant No.DMETKF2020015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The chain rule is adopted to compute the derivative terms of \({\partial {\hat{r}}_{out}(k)}/{\partial m_{j}^{i}(k)}\), \({\partial {\hat{r}}_{out}(k)}/{\partial \sigma_{j}^{i}(k)}\), \({\partial {\hat{r}}_{out}(k)}/{\partial \delta_{j}^{i}(k)}\):

$$\begin{aligned} \begin{aligned} \frac{\partial {\hat{r}}_{out}(k)}{\partial m_{j}^{i}(k)}=&\frac{\partial {\hat{r}}_{out}(k)}{\partial {\overline{f}}^{i}}\frac{\partial {\overline{f}}^{i}}{\partial \overline{\mu }_{{\tilde{F}}_{j}^{i}}(x_{j})}\frac{\partial \overline{\mu }_{{\tilde{F}}_{j}^{i}}(x_{j})}{\partial m_{j}^{i}(k)}+\frac{\partial {\hat{r}}_{out}(k)}{\partial {\underline{f}}^{i}}\frac{\partial {\underline{f}}^{i}}{\partial {\underline{\mu }}_{{\tilde{F}}_{j}^{i}}(x_{j})}\frac{\partial {\underline{\mu }}_{{\tilde{F}}_{j}^{i}}(x_{j})}{\partial m_{j}^{i}(k)}\\ =&\frac{{\hat{r}}_{out}^{i}(k)\left[ \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right] -\sum_{i=1}^{M}\left[ ({\overline{f}}^{i}+{\underline{f}}^{i}){\hat{r}}_{out}^{i}(k)\right] }{\left( \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right) ^2}{\overline{f}}^{i}\frac{(x_{j}-m_{j}^{i}(k))}{(\sigma_{j}^{i}(k)+\delta_{j}^{i}(k))^2}\\&+\frac{{\hat{r}}_{out}^{i}(k)\left[ \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right] -\sum_{i=1}^{M}\left[ ({\overline{f}}^{i}+{\underline{f}}^{i}){\hat{r}}_{out}^{i}(k)\right] }{\left( \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right) ^2}{\underline{f}}^{i}\frac{(x_{j}-m_{j}^{i}(k))}{(\sigma_{j}^{i}(k)-\delta_{j}^{i}(k))^2}\\ =&\frac{{\hat{r}}_{out}^{i}(k)-{\hat{r}}_{out}(k)}{\sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})}\left( \frac{{\overline{f}}^{i}(x_{j}-m_{j}^{i}(k))}{(\sigma_{j}^{i}(k)+\delta_{j}^{i}(k))^2}+\frac{{\underline{f}}^{i}(x_{j}-m_{j}^{i}(k))}{(\sigma_{j}^{i}(k)-\delta_{j}^{i}(k))^2}\right) \\ \end{aligned} \end{aligned}$$
(58)
$$\begin{aligned} \begin{aligned} \frac{\partial {\hat{r}}_{out}(k)}{\partial \sigma_{j}^{i}(k)}&=\frac{\partial {\hat{r}}_{out}(k)}{\partial {\overline{f}}^{i}}\frac{\partial {\overline{f}}^{i}}{\partial \overline{\mu }_{{\tilde{F}}_{j}^{i}}(x_{j})}\frac{\partial \overline{\mu }_{{\tilde{F}}_{j}^{i}}(x_{j})}{\partial \sigma_{j}^{i}(k)}+\frac{\partial {\hat{r}}_{out}(k)}{\partial {\underline{f}}^{i}}\frac{\partial {\underline{f}}^{i}}{\partial {\underline{\mu }}_{{\tilde{F}}_{j}^{i}}(x_{j})}\frac{\partial {\underline{\mu }}_{{\tilde{F}}_{j}^{i}}(x_{j})}{\partial \sigma_{j}^{i}(k)}\\ &=\frac{{\hat{r}}_{out}^{i}(k)\left[ \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right] -\sum_{i=1}^{M}\left[ ({\overline{f}}^{i}+{\underline{f}}^{i}){\hat{r}}_{out}^{i}(k)\right] }{\left( \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right) ^2}{\overline{f}}^{i}\frac{(x_{j}-m_{j}^{i}(k))^2}{(\sigma_{j}^{i}(k)+\delta_{j}^{i}(k))^3}\\ \quad \quad \quad \quad &\quad+\frac{{\hat{r}}_{out}^{i}(k)\left[ \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right] -\sum_{i=1}^{M}\left[ ({\overline{f}}^{i}+{\underline{f}}^{i}){\hat{r}}_{out}^{i}(k)\right] }{\left( \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right) ^2}{\underline{f}}^{i}\frac{(x_{j}-m_{j}^{i}(k))^2}{(\sigma_{j}^{i}(k)-\delta_{j}^{i}(k))^3}\\ \quad \quad \quad \quad \ &=\frac{{\hat{r}}_{out}^{i}(k)-{\hat{r}}_{out}(k)}{\sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})}\left( \frac{{\overline{f}}^{i}(x_{j}-m_{j}^{i}(k))^2}{(\sigma_{j}^{i}(k)+\delta_{j}^{i}(k))^3}+\frac{{\underline{f}}^{i}(x_{j}-m_{j}^{i}(k))^2}{(\sigma_{j}^{i}(k)-\delta_{j}^{i}(k))^3}\right) \\ \end{aligned} \end{aligned}$$
(59)
$$\begin{aligned} \begin{aligned} \frac{\partial {\hat{r}}_{out}(k)}{\partial \delta_{j}^{i}(k)}=&\frac{\partial {\hat{r}}_{out}(k)}{\partial {\overline{f}}^{i}}\frac{\partial {\overline{f}}^{i}}{\partial \overline{\mu }_{{\tilde{F}}_{j}^{i}}(x_{j})}\frac{\partial \overline{\mu }_{{\tilde{F}}_{j}^{i}}(x_{j})}{\partial \delta_{j}^{i}(k)}+\frac{\partial {\hat{r}}_{out}(k)}{\partial {\underline{f}}^{i}}\frac{\partial {\underline{f}}^{i}}{\partial {\underline{\mu }}_{{\tilde{F}}_{j}^{i}}(x_{j})}\frac{\partial {\underline{\mu }}_{{\tilde{F}}_{j}^{i}}(x_{j})}{\partial \delta_{j}^{i}(k)}\\ =&\frac{{\hat{r}}_{out}^{i}(k)\left[ \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right] -\sum_{i=1}^{M}\left[ ({\overline{f}}^{i}+{\underline{f}}^{i}){\hat{r}}_{out}^{i}(k)\right] }{\left( \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right) ^2}{\overline{f}}^{i}\frac{(x_{j}-m_{j}^{i}(k))^2}{(\sigma_{j}^{i}(k)+\delta_{j}^{i}(k))^3}\\&+\frac{{\hat{r}}_{out}^{i}(k)\left[ \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right] -\sum_{i=1}^{M}\left[ ({\overline{f}}^{i}+{\underline{f}}^{i}){\hat{r}}_{out}^{i}(k)\right] }{\left( \sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})\right) ^2}{\underline{f}}^{i}\frac{-(x_{j}-m_{j}^{i}(k))^2}{(\sigma_{j}^{i}(k)-\delta_{j}^{i}(k))^3}\\ =&\frac{{\hat{r}}_{out}^{i}(k)-{\hat{r}}_{out}(k)}{\sum_{i=1}^{M}({\overline{f}}^{i}+{\underline{f}}^{i})}\left( \frac{{\overline{f}}^{i}(x_{j}-m_{j}^{i}(k))^2}{(\sigma_{j}^{i}(k)+\delta_{j}^{i}(k))^3}-\frac{{\underline{f}}^{i}(x_{j}-m_{j}^{i}(k))^2}{(\sigma_{j}^{i}(k)-\delta_{j}^{i}(k))^3}\right) \\ \end{aligned} \end{aligned}$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, Y. & Chen, G. Interval type-2 fuzzy neural network based constrained GPC for NH\(_{3}\) flow in SCR de-NO\(_{x}\) process. Neural Comput & Applic 33, 16057–16078 (2021). https://doi.org/10.1007/s00521-021-06227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06227-9

Keywords

Navigation