Skip to main content
Log in

Diagnosis and classification prediction model of pituitary tumor based on machine learning

  • S.I.: AI-based Web Information Processing
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In order to improve the diagnosis and classification effect of pituitary tumors, this paper combines the current common machine learning methods and classification prediction methods to improve the traditional machine learning algorithms. Moreover, this paper analyzes the feature algorithm based on the feature extraction requirements of pituitary tumor pictures and compares a variety of commonly used algorithms to select a classification algorithm suitable for the model of this paper through comparison methods. In addition, this paper carries out the calculation of the prediction algorithm and verifies the algorithm according to the actual situation. Finally, based on the neural network algorithm, this paper designs and constructs the algorithm function module and combines the actual needs of pituitary tumors to build the model and verify the performance of the model. The research results show that the model system constructed in this paper meets the expected demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Smith-Bindman R, Aubin C, Bailitz J et al (2014) Ultrasonography versus computed tomography for suspected nephrolithiasis[J]. N Engl J Med 371(12):1100–1110

    Article  Google Scholar 

  2. Aspelund G, Fingeret A, Gross E et al (2014) Ultrasonography/MRI versus CT for diagnosing appendicitis[J]. Pediatrics 133(4):586–593

    Article  Google Scholar 

  3. Nazerian P, Vanni S, Volpicelli G et al (2014) Accuracy of point-of-care multiorgan ultrasonography for the diagnosis of pulmonary embolism[J]. Chest 145(5):950–957

    Article  Google Scholar 

  4. Levitov A, Frankel HL, Blaivas M et al (2016) Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients—part II: cardiac ultrasonography[J]. Crit Care Med 44(6):1206–1227

    Article  Google Scholar 

  5. Dhir V, Isayama H, Itoi T et al (2017) Endoscopic ultrasonography-guided biliary and pancreatic duct interventions[J]. Dig Endosc 29(4):472–485

    Article  Google Scholar 

  6. Lord J, McMullan DJ, Eberhardt RY et al (2019) Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study[J]. Lancet 393(10173):747–757

    Article  Google Scholar 

  7. Liu J, Liu F, Liu Y et al (2014) Lung ultrasonography for the diagnosis of severe neonatal pneumonia[J]. Chest 146(2):383–388

    Article  Google Scholar 

  8. Marin JR, Lewiss RE, American Academy of Pediatrics et al (2015) Point-of-care ultrasonography by pediatric emergency medicine physicians[J]. Pediatrics 135(4):e1113–e1122

    Article  Google Scholar 

  9. Sovio U, White IR, Dacey A et al (2015) Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the pregnancy outcome prediction (POP) study: a prospective cohort study [J]. Lancet 386(10008):2089–2097

    Article  Google Scholar 

  10. Mozer P, Rouprêt M, Le Cossec C et al (2015) First round of targeted biopsies using magnetic resonance imaging/ultrasonography fusion compared with conventional transrectal ultrasonography-guided biopsies for the diagnosis of localised prostate cancer[J]. BJU Int 115(1):50–57

    Article  Google Scholar 

  11. Zanobetti M, Scorpiniti M, Gigli C et al (2017) Point-of-care ultrasonography for evaluation of acute dyspnea in the ED[J]. Chest 151(6):1295–1301

    Article  Google Scholar 

  12. Laursen CB, Sloth E, Lassen AT et al (2014) Point-of-care ultrasonography in patients admitted with respiratory symptoms: a single-blind, randomised controlled trial[J]. Lancet Respir Med 2(8):638–646

    Article  Google Scholar 

  13. Kitano M, Yoshida T, Itonaga M et al (2019) Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer[J]. J Gastroenterol 54(1):19–32

    Article  Google Scholar 

  14. Bazot M, Daraï E (2017) Diagnosis of deep endometriosis: clinical examination, ultrasonography, magnetic resonance imaging, and other techniques [J]. Fertil Steril 108(6):886–894

    Article  Google Scholar 

  15. Guirguis-Blake JM, Beil TL, Senger CA et al (2014) Ultrasonography screening for abdominal aortic aneurysms: a systematic evidence review for the US preventive services task force [J]. Ann Intern Med 160(5):321–329

    Article  Google Scholar 

  16. Choi JH, Lee SS, Choi JH et al (2014) Long-term outcomes after endoscopic ultrasonography-guided gallbladder drainage for acute cholecystitis [J]. Endoscopy 46(08):656–661

    Article  Google Scholar 

  17. Xie C, Cox P, Taylor N et al (2016) Ultrasonography of thyroid nodules: a pictorial review [J]. Insights Imaging 7(1):77–86

    Article  Google Scholar 

  18. Alvarez-Sánchez MV, Jenssen C, Faiss S et al (2014) Interventional endoscopic ultrasonography: an overview of safety and complications [J]. Surg Endosc 28(3):712–734

    Article  Google Scholar 

  19. Ohuchi N, Suzuki A, Sobue T et al (2016) Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan strategic anti-cancer randomized trial (J-START): a randomised controlled trial [J]. Lancet 387(10016):341–348

    Article  Google Scholar 

  20. Chou EH, Dickman E, Tsou PY et al (2015) Ultrasonography for confirmation of endotracheal tube placement: a systematic review and meta-analysis [J]. Resuscitation 90:97–103

    Article  Google Scholar 

  21. Liu J (2014) Lung ultrasonography for the diagnosis of neonatal lung disease [J]. J Matern Fetal Neonatal Med 27(8):856–861

    Article  Google Scholar 

  22. Flores WG, de Albuquerque PWC, Infantosi AFC (2015) Improving classification performance of breast lesions on ultrasonography [J]. Pattern Recogn 48(4):1125–1136

    Article  Google Scholar 

  23. Liu J, Chen XX, Li XW et al (2016) Lung ultrasonography to diagnose transient tachypnea of the newborn [J]. Chest 149(5):1269–1275

    Article  Google Scholar 

  24. Logan JK, Rais-Bahrami S, Turkbey B et al (2014) Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies [J]. BJU Int 114(5):641–652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tang.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Xiao, Y., Wu, M. et al. Diagnosis and classification prediction model of pituitary tumor based on machine learning. Neural Comput & Applic 34, 9257–9272 (2022). https://doi.org/10.1007/s00521-021-06277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06277-z

Keywords

Navigation