
S. I . : MACHINE LEARNING APPLICATIONS FOR SECURITY

DCU-Net: a dual-channel U-shaped network for image splicing forgery
detection

Hongwei Ding1,2 • Leiyang Chen1 • Qi Tao1 • Zhongwang Fu1 • Liang Dong1 • Xiaohui Cui1,2

Received: 20 January 2021 / Accepted: 10 July 2021 / Published online: 12 August 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
The detection and location of image splicing forgery are a challenging task in the field of image forensics. It is to study

whether an image contains a suspicious tampered area pasted from another image. In this paper, we propose a new image

tamper location method based on dual-channel U-Net, that is, DCU-Net. The detection framework based on DCU-Net is

mainly divided into three parts: encoder, feature fusion, and decoder. Firstly, high-pass filters are used to extract the

residual of the tampered image and generate the residual image, which contains the edge information of the tampered area.

Secondly, a dual-channel encoding network model is constructed. The input of the model is the original tampered image

and the tampered residual image. Then, the deep features extracted from the dual-channel encoding network are fused for

the first time, and then the tampered features with different granularity are extracted by dilation convolution, and then, the

secondary fusion is carried out. Finally, the fused feature map is input into the decoder, and the predicted image is decoded

layer by layer. The experimental results on Casia2.0 and Columbia datasets show that DCU-Net performs better than the

latest algorithm and can accurately locate tampered areas. In addition, the attack experiments show that DCU-Net model

has good robustness and can resist noise and JPEG recompression attacks.
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1 Introduction

Image has always been the most effective information

carrier in people’s life, and it has penetrated into all aspects

of our life. With the development of image editing tech-

nology, people can easily modify the content of the image,

resulting in the tampered image transmission completely

different information. Due to the lack of digital media

supervision, malicious image tampering has caused serious

adverse consequences in military, political, life, and aca-

demic fields [1]. Therefore, there is an urgent need for a

detection method of image tampering and forgery.

The common image forgery can be divided into three

categories: copy–move [2–4], cut–paste [5, 6], and remove

[7–9]. Copy–move refers to copy part of the content of the

image and paste it into the same image; cut–paste usually

cuts part of the content from one image and pastes it into

another image; and remove means to delete part of the

image and fill it with background pixels. In order to reduce

the public trust crisis caused by image tampering and for-

gery, many scholars have carried out relevant research

[8, 10, 11]. These methods greatly promote the develop-

ment of digital image tamper detection technology. In this

paper, we focus on image splicing forgery detection. On

the one hand, image splicing is the most common type of

tampering in daily life, which is closely related to the

public life. On the other hand, because the tampered area is

cut from other images, only by recognizing the difference

between the tampered area and the unmodified area can we

detect effectively. However, the tampered image is usually

post-processed to eliminate the difference after tampering.

This makes image splicing forgery detection more chal-

lenging than other tamper detection methods. Based on

this, the research of image splicing forgery detection has

more important significance. As shown in Fig. 1, an
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example of image splicing forgery is given, including

authentic image, splicing image and ground truth, where

white area in ground-truth image is tampered area. As can

be seen from the example, it is difficult for the human eye

to distinguish the tampered area even with detailed

inspection.

According to the difference of the attributes between the

tampered region and the authentic region, the traditional

image splicing forgery detection can be roughly divided

into four types: based on the difference of imaging

equipment [10, 12–14], based on the difference of image

essential attributes [15–20], based on the difference of

image compression attributes [21–24], and based on the

perceptual image hash [25, 26]. Image tamper detection

based on the difference of imaging equipment means that

different imaging equipment will leave specific fingerprint

information in the formed image, through which the tam-

pering and authentic image can be determined. Yao et al.

[12] proposed an image splicing detection method for

image blocks from different sources by exploring the

relationship between noise level function and camera

response function according to different noise features in

different source regions. Nan et al. [14] designed a noise

level function based on the influence of texture and edge of

image on the local estimation of noise variance, and

regarded the image block not constrained by the noise level

function as the splicing region. Tamper detection based on

the difference of the essential attributes of the image is to

distinguish the tampered image from the authentic image

by discovering the change of the inherent attribute in the

image. Han et al. [18] employed an effective Markov

feature selection algorithm and applied it to image forgery

detection. In addition, Wang et al. [27] proposed a color

image splicing detection method based on gray-level co-

occurrence matrix (GLCM) of chromaticity threshold edge

image. Tamper detection based on image compression

attribute difference is mainly aimed at JPEG format ima-

ges, which is divided into double JPEG compression

detection and block effect inconsistency detection. In [28]

firstly, a region in the image is manually selected, and the

DCT coefficients in the region are Fourier transformed, and

the original quantization matrix is estimated by the fre-

quency domain characteristics. Then, the block effect of

the whole image is calculated by using the quantization

matrix of the region. The region with large difference is the

tampered region. Iakovidou et al. [24] proposed a new

method to detect image forgery by locating grid alignment

anomalies in the bitmap of JPEG compressed images.

Tamper detection based on perceptual image hashing is to

extract the global or local features of the image to form a

hash sequence, so as to achieve image splicing tamper

detection. Wang et al. [29] employed to use Watson’s

visual model to extract visual sensitive features, and then

generate robust perceptual hash code by combining image

block based features and key point based features.

Although the above methods have certain effect on the

forgery detection of specific images, when the specific

attributes in the image do not exist or are not obvious, the

detection failure will occur. For example, (1) when the

original part and the tampered part of the tampered image

come from the imaging device with the same property, the

image will contain the same noise attribute; then, the image

tamper detection method based on the difference of the

equipment imaging will be invalid. (2) Usually after the

image splicing forgery, the corresponding post-processing

will be carried out, which will seriously weaken the

essential attribute difference between the original part and

the tampered part of the image, which will make the cor-

responding detection method invalid. (3) The difference of

image compression attributes is usually suitable for JPEG

format image tamper detection, but not for other types of

images. (4) The tamper detection method based on per-

ceptual image hash needs the hash value of the original

image for tampering detection, so this method cannot be

applied to blind detection of unknown images.

The core of deep learning method is to extract the main

representation features from the data by using a series of

nonlinear transformations. The extracted representation

features are multi-dimensional, multi-level, and multi-an-

gle. Therefore, the features extracted by deep learning have

stronger generalization and expression ability. As an

effective deep learning model of image processing, con-

volutional neural network has been widely concerned by

researchers. For example, Vasan et al. [30] proposed a

visualization method of malware, and used the fine-tuned

convolution neural network structure to detect the visual-

ized image. Gadekallu et al. [31] employed a novel PCA—

which optimization based deep neural network model for

Fig. 1 Splicing tamper forensics sample image. Among them, a and

b are from Casia2.0 dataset and c are from Columbia dataset.

a Modified the sky background, b added animals to the image,

c modified the object on the left
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classification of tomato plant diseases using GPU. Based

on its translation invariance and other attributes, convolu-

tional neural network has achieved great success in image

classification, semantic segmentation, image generation

[32, 33], and object detection. For example, the current

outbreak of COVID-19, convolutional neural network for

medical image segmentation can play an important role in

epidemic prevention and control [34, 35]. In addition, the

use of convolutional neural networks for the detection of

common diseases in medicine has also achieved good

detection results [36–38]. The convolution neural network

is applied to image tamper detection [39–41], which can

realize the self-learning of tamper features, thus making up

for the defects of traditional methods that rely on single

image attributes and lack of generalization ability. Bappy

et al. [42] proposed a model based on CNN-LSTM to learn

the difference characteristics of tampered area and non-

tampered region in the shared boundary, so as to locate the

tampered area. However, this method uses the block

method to detect and cannot effectively combine the fea-

ture information of the context for training. In order to

make up for the lack of context information in the model,

bappy et al. then proposed a hybrid LSTM and encoder–

decoder architecture for detecting image forgery [9]. Yang

et al. [43] employed a coarse to fine image tamper detec-

tion architecture, namely constrained R-CNN. The model

can help the network pay more attention to the learning of

tampering operation features, but it will cause some feature

information loss in the constrained convolution operation.

Xiao et al. [44] adopted a detection framework combining

cascaded convolutional neural network and adaptive clus-

tering algorithm, which can realize tamper localization

from coarse to fine. However, the results of clustering can

only roughly locate the tamper location, and only apply to a

single tamper object. Cun et al. [45] believed that the

splicing area was not only related to local features, but also

highly related to global features. Based on this, the image

splicing forgery location based on semi global network and

full connected condition random field is proposed. Zhou

et al. [8] proposed a two-stream Faster R-CNN network

detection architecture. The two streams are noise stream

extracted by spatial rich model (SRM) and RGB stream of

image. However, when the tampered area and the non-

tampered region have the same noise, the detection effect

of the detection model will be reduced. Reference [46, 47]

employed an image tamper detection framework based on

improved U-Net structure. Bi et al. [46] constructed a ring-

shaped residual U-Net network for image splicing forgery

detection. The core idea is to enhance the learning mode of

CNN through the residual propagation and feedback pro-

cess in CNN. Zhang et al. [47] used the spatial rich model

(SRM) to capture the residual signal in the image to be

detected, and then combined it with the RGB features of

the image, and the combined features were used for the

training of U-Net model. However, this method has the

same defects as Zhou et al. [8], and the detection effect will

be reduced when the tampered region and the non-tam-

pered region have the same source. Biach et al. [48]

adopted a method based on the encoder/decoder structure

to locate the tampered region and used resnet50 in the

encoder structure to effectively improve the detection

accuracy of tampered region. However, this method has

high computational complexity due to its relatively com-

plex model. Rao et al. [49] proposed a multi-semantic

attention model and integrated it into a convolutional

neural network to realize image forgery detection and

localization. The tamper detection performance of this

method for small objects needs to be improved. Bi et al.

[50] employed an image forgery detection method based on

D-Unet. This method is based on the traditional U-Net,

uses DWT (Haar discrete wavelet transform) to extract the

boundary information of the tampered area, and designs the

SPGFE module for global feature extraction. The results

show that the method can effectively improve the detection

accuracy.

In order to accurately locate the forgery image at the

pixel level, we propose a tamper detection method based

on dual-channel U-shaped network model. The proposed

method is shown in Fig. 2. Firstly, we extract the residual

image of the tampered image by high-pass filters. The edge

information of residual image extracted by high-pass filters

will be enhanced. Because the objects after splicing usually

leave tampering information in the boundary, the residual

image extracted by high-pass filters will provide additional

anomaly feature information for tamper detection model.

Secondly, although the residual image extracted by the

high-pass filter strengthens the edge information, it will

also cause the loss of the content information of the image.

Image forgery detection requires the learning of tampering

part of the content features, so the learning of the original

image features is also very important. The structure of the

dual-channel model is designed by the features of the

original image and the residual image as the input. Then,

two feature fusion processes were carried out between the

encoder and decoder in the DCU-Net model. The first

feature fusion is the fusion of deep original image features

and residual image features extracted by two channel

encoders. The second feature fusion is to extract feature

information of different scales by using dilation convolu-

tion and then to fuse the extracted feature information of

different granularity. Finally, the fused features are input

into the decoder for decoding. In the process of decoding,

the feature information extracted from the encoder is added

to the decoder by using the skip connection, so as to reduce

the information loss in the convolution process.
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In summary, the major contributions of this study are

described as follows:

• A dual-channel U-shaped network model, that is, DCU-

Net, is proposed, which can accurately locate the

tampered area at pixel level.

• A training method is combining the residual image

extracted by high-pass filters and the original tamper

image is proposed, which provides more tamper feature

clues for model learning.

• The proposed model adds multi-feature fusion mecha-

nism between encoder and decoder, which can extract

tamper features more effectively and extract feature

information of different granularity better.

The rest of this paper is arranged as follows. The second

section introduces the implementation details of DCU-Net

model, including residual image extraction, model struc-

ture design and post-processing. The third section describes

the experimental results on different datasets and discusses

the experimental results based on subjective evaluation and

index evaluation. The fourth section is the conclusion,

which summarizes the model and experimental results, and

describes the future work.

2 Proposed detection method

We regard the features of the tampered area in the image as

anomaly features [51] and, based on this, use U-Net for the

learning and extraction of anomaly features of the forged

area. The literature [46, 47] shows that U-Net has achieved

good results for forgery detection. The proposed image

splicing forgery detection framework is shown in Fig. 2.

The design structure of the framework is specially designed

for image splicing tamper detection. The dual-channel

structure can make the model learn more tamper features

and content features of tampered area. At the end of the

model, we add the full connection conditional random field

(FCRF) [52] and morphological opening operation to do

further post-processing for the predicted image, which is

used to remove the over segmented pixels and supplement

the missing pixels. This section mainly introduces the

following three parts: Sect. 2.1 introduces the process of

extracting residual image using high-pass filters; Sect. 2.2

details the model structure; and Sect. 2.3 describes the

post-processing based on FCRFs and morphological

opening.

2.1 Residual image

Considering that high-pass filter has shown good results in

different image forgery detection [53, 54], we use the

residual image extracted by high-pass filter as additional

information for image splicing detection. We have

designed filters in the vertical and horizontal directions.

Use this filter at any point in the image, which can be used

as a measurement of the amount of change in the image in

the vertical and horizontal directions. The filters consists of

Fig. 2 Proposed splicing tamper detection model framework. The input of the framework is a dual-channel structure. The upper channel takes the

tamper image itself as the input, and the input of the lower channel is the residual image extracted by high-pass filters
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two 3 � 3 matrices(Sx; Sy), which are used for horizontal

and vertical operations, respectively.

Sx ¼
�1 0 1

�2 0 2

�1 0 1

2
64

3
75; Sy ¼

�1 � 2 � 1

0 0 0

1 2 1

2
64

3
75 ð1Þ

When high-pass filters are convoluted with the image in

plane, the approximate values of measurement difference

in horizontal and vertical directions can be obtained,

respectively. Finally, the residual image can be obtained by

superimposing the horizontal and vertical filtering images.

An example of residual image is shown in Fig. 3.

2.2 Model structure

Most of the deep learning models for image tampering

localization use continuous convolution and deconvolution

operations, which will inevitably cause information loss in

the process of feature extraction. Compared with the tra-

ditional model, the significant improvement of U-Net

model [55] is to add the intermediate skip connection

structure, which can add low-level semantic information

lost by the front-end network to the later high-level

semantic information, thus avoiding the loss of low-level

semantics. Therefore, we use a model similar to U-Net

structure for image splicing tampering detection. Figure 4

shows the structure of the model.

2.2.1 Feature encoder module

In the traditional U-Net model, each convolution module of

encoder contains two convolution layers and one maximum

pooling layer. Our proposed method includes two encoders,

one is used to extract the RGB feature information of

tampered image, and the other is used to extract the tam-

pered feature information from residual image. The model

structure diagram is shown in Fig. 4. The input of the left

encoder is the splicing tampered image, and the input of the

right encoder is the residual image. For the encoder used

for RGB feature extraction of tampered images, we replace

the feature encoder with vgg16 structure [56], which

retains five feature extraction blocks without full connec-

tion layer. The first and second convolution blocks contain

two convolution layers and a max-pooling layer. The third,

fourth and fifth convolution blocks contain three convolu-

tion layers and a max-pooling layer, respectively. Com-

pared with the original encoder structure, using the pre-

trained vgg16 weight can make the model achieve the

optimal training effect faster and avoid falling into the

local optimal solution, and can extract deeper feature

information. For the encoder used in residual image feature

extraction, we use ResNet module [57] instead of the tra-

ditional convolution module and set the stride to 2 instead

of pooling operation. Compared with the original convo-

lution module, ResNet adds a shortcut connection, which

can effectively avoid the vanishing gradient and increase

the convergence speed of the model.

Residual learning: since the tamper feature information

in the residual image is weak, in order to reduce the

information loss in the convolution process, we use ResNet

module to replace the original convolution block. The

original convolution block and ResNet module structure

are shown in Fig. 5a and b. Traditional convolution blocks

are usually composed of several convolution layers. The

underlying mapping fitted by several convolution layers

can be expressed as H(x). The results calculated from these

stacked convolution layers are close to H(x). Therefore, the

definition of ordinary convolution block can be expressed

as follows:

y ¼ Fðx;wÞ ð2Þ

where x and y represent the input and output of the con-

volution block, Fð�Þ represents the mapping function, and

w represents the weight to be learned. In the residual

learning, it is assumed that the input of the residual module

is x and the expected output is H(x). If we pass input x

directly to output, let HðxÞ ¼ FðxÞ þ x. Then our module

only needs to learn a residual function FðxÞ ¼ HðxÞ � x,

instead of approaching H(x) directly. Therefore, the defi-

nition of residual can be expressed as follows:

y ¼ Fðx;wÞ þ x ð3Þ

where the function Fð�Þ represents the residual mapping

learned from the residual block. The residual structure is

shown in Fig. 5b, and the residual learning can be realized

by the shortcut connection. When the network deepens,

using this simple residual structure can better solve the

problem of information loss in the convolution process.
Fig. 3 Example of residual image. a and b are from Casia2.0 and

Columbia datasets, respectively. The first column is tampered image,

the second column is residual image, and the third column is ground-

truth image
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2.2.2 Feature fusion

The model structure proposed in this paper is a dual-

channel model structure. As shown in Fig. 4, the two

channels are convoluted layer by layer to extract the deep

feature information of tampered image and residual image.

The target of the first fusion is the deep features extracted

from the two channels; the second fusion is the feature

fusion after multi-scale dilated convolution of the first

fusion results.

Due to the complexity of the tampered parts in the

tampered images, the tampering positions of different

tampered images are quite different. For example, some

tampered objects are larger and some tampered objects are

very small. Based on this, we propose a method of multi-

scale dilated convolution [58] fusion. The proposed fusion

method mainly depends on different dilated rate to expand

the field of view of the filter, so as to better detect different

sizes of tampered objects. Mathematically, the dilated

convolution under 2-D signal is calculated as follows:

Fig. 4 DCU-Net model structure for image splicing forgery detection.

There are two encoders on the left and right sides. The input is

tampered image and residual image. At the bottom is the feature

fusion module, the first is the fusion of image features and residual

features extracted by two convolution channels, and the second is the

fusion of different granularity features extracted by dilated convolu-

tion. In the middle is the decoder, which is used for the final image

splicing forgery positioning
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y½i� ¼
X
k

x½iþ rk�w½k� ð4Þ

where x and w are input feature map and filters, respec-

tively. r is the dilated rate, which determines the sampling

step of the input signal. It is equivalent to convolute the

input x with the upsampling filter. The upsampling filter is

generated by inserting r � 1 zeros between two consecu-

tive filter values in each spatial dimension. The schematic

diagram of dilated convolution is shown in Fig. 6.

The information of context semantics is mainly deter-

mined by the size of the receptive field. If the receptive

field can provide richer information, then more context

information can be used. In order to extract the features of

tampered targets with different scales, we use the dilated

convolution operation mentioned above. The dilated con-

volution can enlarge the receptive field arbitrarily without

introducing additional parameters and can utilize the con-

text information of the image, so it is very suitable for

multi-scale image tamper detection tasks. As shown in

Fig. 7, we use three branches to receive the semantic

information in the encoder module. First, set the dilated

rate in dilated convolution to 1, 2, and 3 to expand the

receptive field, so as to extract feature information of dif-

ferent scales in the encoder module. Then, the image

semantic features extracted from different dilated rates are

fused.

2.2.3 Feature decoder module

The feature decoder is used to recover the high-level

semantic information extracted from the context semantic

extraction module and feature encoder. The decoder maps

the low-resolution feature image back to the size of the

input image by the pixel by pixel classification. We add

this mechanism in DCU-Net model according to the skip

connection mode of U-Net model. Skip connection mech-

anism can add low-level semantic information from enco-

der to decoder to make up for the information loss caused

by continuous convolution and pooling. As shown in

Fig. 4, we only add the semantic information in the RGB

feature encoder into the decoder. Because more content

features are lost in the process of residual image extraction.

Therefore, in order not to affect the training effect of the

model, we did not add low-level residual semantic infor-

mation to the decoder. In addition, in the process of

decoding, the feature map dimensions may not match(be-

cause in the downsampling process, when the height or

width of the image cannot be divided by 2, the feature map

recovered by upsampling will not match the dimension of

the corresponding down sampling feature), so we use the

‘‘cropping’’ method to prune the feature map extracted

from the encoder. ‘‘Cropping’’ can prune the dimension of

the feature map in the encoder according to the dimension

of the feature map in the decoder. The pruned feature map

Fig. 5 Two types of convolution modules. a Common module.

b Residual module

Fig. 6 Dilated convolution example graph

Fig. 7 Feature fusion: the first fusion is for the features extracted by

two channels, and the second fusion is for the features extracted by

dilation convolution
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will be consistent with the dimension of feature map in

decoder. In order to reduce the complexity of the model,

we only perform one feature convolution for the features

fused by skip connection. Through experiments, we find

that the performance of DCU-Net model cannot be

improved by using two convolution operations. As shown

in the decoder structure in Fig. 4, each module in our

decoder contains a concatenate block, a conv(3�3) con-

volution block, and an upsampling block. Finally, we use

the ‘‘zeropadding’’ operation to solve the possible mis-

match between the output dimension and the ground-truth

dimension. Because the final result of classification is

binary classification of pixels, so we use sigmoid as

classifier.

2.2.4 Loss function

As shown in Fig. 1, the proposed DCU-Net detection

framework is an end-to-end deep learning system. We need

to train the framework to determine the tampered and non-

tampered regions, that is, to classify pixels into foreground

(tampered) and background, which is essentially a binary

classification of pixels. The most common loss function in

deep learning framework is cross-entropy loss function, so

we apply binary cross-entropy loss function to calculate the

loss in the training process. The formula of binary cross-

entropy loss function is as follows:

Lbce ¼ � 1

N

XN

i
gðxÞ log pðxÞ þ ð1� gðxÞÞ logð1� pðxÞÞ

ð5Þ

where N is the number of pixels, gð�Þ is the expected out-

put, that is, the real data label, the value is gð�Þ 2 f0; 1g ;

pð�Þ is the actual output, the value is pð�Þ 2 ½0; 1�. However,
in the image tampering, the size of the tampered object is

uncertain. Sometimes the tampered object only occupies a

very small part of the whole image. When the sample is

unbalanced, it is not optimal to use the cross-entropy loss

function only. Because dice loss function directly takes the

evaluation index of segmentation effect as the loss to

supervise the model training, and ignores a large number of

background pixels in the calculation, so it has a good effect

on the sample imbalance problem. Therefore, in this study,

we combine the binary cross-entropy loss with dice loss.

The formula of dice loss function is as follows:

Ldice ¼ 1� 2
PN

i pðxÞgðxÞPN
i p2ðxÞ þ

PN
i g2ðxÞ

ð6Þ

The final loss function is defined as:

Lloss ¼ w � Lbce þ Ldice ð7Þ

where w is the weight applied to the binary cross-entropy

loss function. In addition, in order to improve the predic-

tion accuracy and speed up the training, we use adaptive

moment estimation (Adam) with nesterov momentum as

the optimization algorithm for model training. Compared

with the traditional optimization algorithm, Adam has the

advantages of high computational efficiency, small mem-

ory consumption, and adaptive adjustment of learning rate.

2.3 Post-processing

Using DCU-Net model for tamper detection can obtain

relatively accurate pixel-level tamper location. However,

the obtained image still contains some under segmented

and transitional segmented localization images. Based on

this, we choose full connection conditional random field to

further refine the detection results. FCRFs can further

process the results of deep learning prediction combined

with the relationship between all pixels in the tampered

image. FCRFs can optimize the rough and uncertain marks

in the classification image, correct the small misclassifi-

cation region, and get more detailed segmentation bound-

ary. After FCRF processing, there may be outliers in the

image. We use opening operation to deal with it.

2.3.1 Fully connected conditional random field

For image I and label X, I is defined as the random field

containing the observation set fI1; I2; � � � ; Ikg, and X is the

random field containing the hidden state set

fX1;X2; � � � ;Xkg. Ik is the eigenvector of pixel k ; Xk is the

label of pixel k. X and I can be modeled as conditional

random fields, which can be described as follows with

Gibbs distribution:

PðX ¼ xjIÞ ¼ 1

ZðIÞ expð�EðxjIÞÞ ð8Þ

where PðX ¼ xjIÞ is the posterior probability of label dis-

tribution X when the pixel distribution is I ; Z(I) is the

conditional probability normalization factor; E(x|I) is the

energy function. The Gibbs energy function E(x) can be

expressed as follows:

EðxÞ ¼
X
i

wuðxiÞ þ
X
i\j

wpðxi; xjÞ ð9Þ

In the formula, the unary potential function wu ¼
� logPðxiÞ represents the probability that the global coarse

classification pixel i belongs to a certain class. It can use

the shape, structure, color, and texture information in the

image. wðxi; xjÞ is a pairwise potential function, which is

expressed as follows:
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wpðxi; xjÞ ¼ lðxi; xjÞ
XM
m¼1

wðmÞk
ðmÞ
G ðfi; fjÞ ð10Þ

where fi and fj are the eigenvectors of pixels i and j ; k
ðmÞ
G is

the Gaussian kernel function acting on the eigenvector; m

is the number of Gaussian kernels; and wðmÞ is the weight

corresponding to the Gaussian kernel function. lðxi; xjÞ is

the error penalty term, which can be expressed as follows:

lðxi; xjÞ ¼
1 xi 6¼ xj

0 xi ¼ xj

�
ð11Þ

From the error penalty term, we can see that only when the

pixel i and j labels are different, the pairwise potential

function has a value.

2.3.2 Morphological opening

After FCRF processing, the predicted image may have

broken boundaries and small isolated pixels. Morphologi-

cal opening operation can be used to eliminate small

objects, smooth shape boundaries, and do not change their

area. Therefore, we further do the image processing. In

mathematical morphology, the opening operation is defined

as corrosion first and then dilation. The structure element B

is used to perform morphological opening operation on

target image A, which is represented by symbol A � B. It is
defined as:

A � B ¼ ðA� BÞ 	 B ð12Þ

where � is the corrosion operation and 	 is the dilation

operation. After the morphological opening operation, the

predicted image is shown in Fig. 8.

3 Experiment

This section mainly introduces a variety of comparative

experiments. Section 3.1 describes the details of the

experiment, including experimental parameters, datasets

and evaluation criteria. Section 3.2 shows the comparison

results between the proposed method and other methods.

Section 3.3 introduces the results of attack experiments,

including Gaussian noise attack and JPEG compression

attack.

3.1 Experimental details

3.1.1 Experimental parameters

The environment used in this study is based on Linux

system. Keras and tensor flow framework are used to build

and test the model. The GPU on the server is configured as

Tesla V100 and the memory is 16GB. The epoch of model

training is 300 and the batch size is 16. The initial learning

rate is set to 0.0001, and the learning rate is set to 0.00001

after 100 iterations. The weight used by in the loss function

is set to 0.01. During the experiment, the proportion of

validation set is 0.2. When the fully connected random field

is used for post-processing, the number of FCRF inferences

is 5 times.

3.1.2 Dataset

In this paper, we use two public datasets as experimental

data, which are Casia v2.0 [59] and Columbia [60]

uncompressed data. Casia includes two types of tampering:

copy–move and cut–paste. We selected 1062 groups of

splicing tampered images from Casia dataset as experi-

mental data, including 967 training data and 95 test data. In

order to prevent overfitting due to less data samples and

improve the training effect of the model, we expand the

training data. We have expanded the training data by using

three times flipping operation, and expanded training data

is 3868 groups. Similarly, we selected 90 groups of cut–

paste tampered images from the Columbia uncompressed

dataset and expanded them. After three times of flipping,

the data volume of Columbia was 360 groups. We selected

340 groups as training data and 20 groups as test data.

3.1.3 Evaluating indicator

In order to make a quantitative evaluation of the experi-

mental results of this study, we select the precision, recall,

F-measure, and accuracy as the evaluation index.

Fig. 8 Image of post-processing results. In the figure a–e are original tampered image, ground-truth image, prediction image, FCRF processing

image and opening operation processing image

Neural Computing and Applications (2023) 35:5015–5031 5023

123



Recall ¼ Tp
TP þ FN

ð13Þ

Precision ¼ TP
TP þ FP

ð14Þ

F�measure ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity
ð15Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð16Þ

where TP; TN ;FP; and FN are true positive, true negative,

false positive, and false negative, respectively.

3.2 Comparative experiment and analysis

This section introduces the comparison and analysis of the

experimental results of DCU-Net model and other detec-

tion models. We have carried on the contrast experiment

from two aspects: the intuitionistic result and the quanti-

tative index evaluation.

3.2.1 Detection result

DCU-Net model intuitive detection results: we have done

experiments on Casia and Columbia datasets. Several

groups of test result images are randomly selected from the

test results. Figure 9 shows the detection results of this

study. It can be seen from the detection results that the

DCU-Net model proposed in this study has achieved good

results, and can carry out accurate pixel-level tamper

location.

Baseline method test results: in order to compare the

effectiveness of the proposed methods, we will carry out

experiments on some baseline methods. We compare the

DCU-Net model proposed in this paper with these baseline

methods, and give an intuitive image of the detection effect

(as shown in Fig. 10). Each baseline method is described as

follows:

• NADQ [61]: based on the derivation of a unified

statistical model that characterizes DCT coefficients

when aligned or misaligned double JPEG compression

is applied; the statistical model is used to generate a

likelihood map that shows the probability of each 8 � 8

image block being double compressed.

• CFA [62]: the techniques are based on computing a

single feature and a simple threshold based classifier.

By interpreting the locally nonexistent CFA artifacts as

tampering evidence, the proposed scheme takes the

forgery graph of the credible probability of each small

pixel block as the output.

• FCN [63]: this method is used to classify images at the

pixel level, thus solving the problem of image segmen-

tation at the semantic level. FCN is applied to image

splicing tamper detection, which can automatically

learn image tampering features.

• U-Net [55]: as one of the models of full convolution

network structure, it can also be used for pixel-level

classification. Compared with FCN, the most important

improvement is to add skip connection structure to

reduce the loss of information.

• U-Net-RGB: based on the dual-channel model structure

proposed in this study, the U-Net-RGB model only uses

RGB channel as input. We remove the channel where

the residual image is located, and only retain the

channel of RGB image as the input, so as to verify the

detection effect of using only RGB image.

• U-Net-Rimg: U-Net-Rimg model only uses residual

image as input. We apply the residual image to the

input channel of the original RGB image to test the

effect of the residual image used in image splicing

detection.

As shown in Fig. 10, in order to compare the perfor-

mance of the DCU-Net model proposed in this study, we

compare it with the six methods. Among all the compar-

ison methods, there are two traditional detection methods

based on feature extraction; two detection methods based

on semantic segmentation; and the other two are from the

branches of DCU-Net model. We randomly selected seven

groups of data from the test data as examples, in which (a)–

(d) these four groups are from the Casia dataset, and (e)–

(g) the three groups are from the Columbia dataset. For

Casia data, the splicing region forgery is more fine, and

after processing operation; for Columbia data, the splicing

region forgery is relatively rough. The first line and the

second line are the original tampered image and the cor-

responding ground truth, and the rest are the detection

results of seven detection methods. From the perspective of

subjective vision, we can see that NADQ algorithm has a

certain detection effect for splicing tampering in Casia

dataset. Since NADQ is suitable for detecting JPEG

Fig. 9 Tamper location detection result example image. a–c are the

detection result of images in Casia dataset; d and e show the detection

results of images in Columbia dataset
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compressed data, it is invalid to detect tampered images in

Columbia uncompressed data. CFA algorithm has a good

detection result for tampering in Columbia data, but it is

invalid for image detection in Casia. Although FCN and

U-Net can effectively locate the tampered area, there are

many problems of mis-segmentation and over segmenta-

tion. Compared with the traditional semantic segmentation

method, the DCU-Net based branching method can

improve the detection of tampered regions, but there are

still a few mis-segmentation and over segmentation.

Finally, our proposed method combines the RGB feature of

the original tampered image with the residual image feature

and performs a two-step post-processing operation, so it

can locate the tampered area more accurately.

3.2.2 Index evaluation

In order to make a more objective and accurate evaluation

for the method proposed in this paper, we use the four

evaluation indexes mentioned above to evaluate DCU-Net

more objectively. Compared with subjective evaluation,

three algorithms are added for image splicing detection,

including 11 comparison algorithms. Tables 1 and 2 show

the evaluation results on Casia and Columbia data,

respectively. From the evaluation results of pixel-level

classification in Tables 1 and 2, it can be seen that the

results of four evaluation indexes of NADQ method,

F-measure, precision, recall, and accuracy, are relatively

low. CFA algorithm has a certain detection effect for

simple tampering in Colombia data, and achieves higher

scores than NADQ in four evaluation indexes. On the

whole, the image tamper detection based on deep learning

is better than the traditional detection algorithm. C2RNet

[44] proposed a coarse to fine splicing detection method

and finally used clustering algorithm to post-processing the

detection results. Although the tamper image can be loca-

ted roughly, the tampered area cannot be accurately located

after clustering. Therefore, the detection effect is poor in

precision. RRU-Net [46] adds residual learning and feed-

back process to the traditional U-Net algorithm, which

improves the detection effect of the model greatly. DU-

DC-EC Net [47] proposed a cross-layer crossover mecha-

nism and added SRM filter to capture the residual signal in

the image, which effectively improved the F-measure and

Fig. 10 Comparison between

DCU-Net and other methods for

splicing tamper detection.

NADQ and CFA are traditional

methods, and the rest are deep

learning methods. a–d from

Casia dataset, e–g from

Columbia dataset
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accuracy of the model. DCU-Net-Rimg and DCU-Net-

RGB, respectively, use the single channel of our model.

Tables 1 and 2 shows that the detection effect of the two

models has been greatly improved. DCU-Net-NFF means

that it only contains dual-channels and does not include

multi-scale feature extraction and fusion. Finally, the

model proposed in this paper is a dual-channel input

model, which combines the RGB features of the original

tampered image and the residual image features of the

tampered edge, making the results of the four evaluation

indicators all get the optimal.

3.3 Comparative analysis of attack experiments

In order to further evaluate the effectiveness and robustness

of the algorithm, we have carried out attack experiments on

Casia and Columbia datasets. The two attacks used in this

article are Gaussian noise attacks and JPEG compression

attacks, which are common in image data. The experi-

mental results and evaluation indexes are shown in

Figs. 11, 12, 13 and 14.

3.3.1 Comparison of experimental results of Gaussian noise
attack

This part discusses the influence of Gaussian noise on

image tamper detection. a–c in Fig. 11 show the experi-

mental results of Casia data under different variance noise

attacks, and a–c in Fig. 12 show the experimental results of

Columbia data under different variance noise attacks. From

the experimental results, we can see that with the increase

in the Gaussian noise, all the evaluation indexes show

different degrees of decrease. It shows that Gaussian noise

has a great influence on image tamper detection. As shown

in Figs. 11 and 12, when the variance is 0.002, the

F-measure and precision values of CFA and ADQ have

almost reached the lowest point. With the increase in the

Gaussian noise, the recall value of the CFA method in the

two datasets is basically unchanged. This is because the

CFA method determines almost all detection areas as

tampered areas, which leads to detection failure. As shown

in Fig. 15, when the variance is 0.004, the CFA method

recognizes almost all areas as tampered parts. As the

variance of Gaussian noise gradually increases from 0.002

to 0.01, the three evaluation indicators of the detection

method based on deep learning also show a gradual

decline. It can be seen that the noise attack also has a great

impact on the deep learning method, but there is no

detection failure like the traditional method. In general, the

method based on deep learning is still better than the tra-

ditional detection method in the final results. In addition, it

can be seen from the detection index that with the increase

in the Gaussian noise, the detection index of the proposed

model is least affected. With the increase in the Gaussian

noise, the proposed method still achieves the best results in

F-measure and precision.

3.3.2 Comparison of experimental results of JPEG
compression attack

This section discusses the impact of JPEG compression

attack on detection results. a–c in Fig. 13 show the results

of three evaluation indexes when JPEG compression attack

is added to Casia data, and a–c in Fig. 14 show the results

of three evaluation indexes when JPEG compression attack

is added to Columbia data. From the overall detection

index results, JPEG compression has a certain impact on

the detection of all models, but the influence of deep

learning based method is less than that of traditional

Table 1 Casia dataset evaluation results

Method F-measure Precision Recall Accuracy

CFA [62] 0.2026 0.1439 0.6973 0.3488

NADQ [61] 0.2847 0.2777 0.4555 0.7274

FCN [63] 0.5470 0.6654 0.5308 0.9369

U-Net [55] 0.5978 0.6869 0.6121 0.9462

C2RNet [44] 0.6758 0.5810 0.8080 –

RRU-Net [46] 0.8410 0.8480 0.8340 –

DU-DC-EC Net [47] 0.6830 – – 0.9782

D-Unet [50] 0.8590 0.8660 0.8520 –

DCU-Net-RImg 0.8209 0.8912 0.8175 0.9661

DCU-Net-RGB 0.8335 0.8620 0.8591 0.9693

DCU-Net-NFF 0.8525 0.8600 0.8735 0.9742

DCU-Net 0.8667 0.8772 0.8893 0.9793

Bold text in the table indicates the highest value in each column

Table 2 Columbia dataset evaluation results

Method F-measure Precision Recall Accuracy

CFA [62] 0.5836 0.7472 0.5994 0.8646

NADQ [61] 0.2378 0.3292 0.2254 0.6557

FCN [63] 0.6885 0.9001 0.6126 0.8847

U-Net [55] 0.7779 0.9850 0.6987 0.9134

C2RNet [44] 0.6950 0.8040 0.6120 –

RRU-Net [46] 0.9150 0.9610 0.8703 –

DU-DC-EC Net [47] 0.9307 – – 0.9663

D-Unet [50] 0.9300 0.9600 0.9010 –

DCU-Net-RImg 0.8858 0.9965 0.8252 0.9407

DCU-Net-RGB 0.9175 0.9981 0.8637 0.9545

DCU-Net-NFF 0.9216 0.9971 0.9004 0.9647

DCU-Net 0.9498 0.9871 0.9176 0.9727

Bold text in the table indicates the highest value in each column
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detection method. With the two traditional detection

methods of CFA and ADQ, as the quality factor drops from

100 to 50, the values of the three evaluation indicators are

already in a very low position. It can be seen from the

Fig. 11 Casia data detection results. a–c Show the experimental results of adding Gaussian noise to Casia dataset

Fig. 12 Columbia data detection results. a–c Show the experimental results of adding Gaussian noise to Columbia dataset

Fig. 13 JPEG compression attack in Casia data. a–c Show the experimental results of JPEG compression attack in Casia dataset

Fig. 14 JPEG compression attack in Columbia data. a–c Show the experimental results of JPEG compression attack in Columbia dataset
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detection results in Fig. 15 that the two methods can no

longer perform effective detection when the quality factor

is 80. Deep learning method is a detection method based on

image content features, which has good resistance to

compression attacks, so it has little impact. In addition,

from the three evaluation indicators, the method in this

paper still has a good detection effect when the quality

factor drops to 50.

3.4 Discussions

In this section, we conduct a comprehensive discussion on

the above experimental results. The experimental results

show that the traditional method only has a certain detec-

tion effect for tampered images with certain attributes, and

its generalization ability is weak, and it is easy to be

interfered by external attacks. The deep learning method

can automatically learn the tamper features of the image,

without manual extraction, so it can automatically detect

the tampered image with various attributes, which are also

the advantage of deep learning method. The DCU-Net

model itself has an excellent detection effect; combined

with the corresponding post-processing, it can achieve

more accurate detection. First of all, from the subjective

and objective index detection results, the methods we

proposed have achieved better results. Subjectively: DCU-

Net is superior to other methods in pixel-level positioning

accuracy, with smaller pixel false positives and missing

positives. Objective index: DCU-Net has achieved good

results on three experimental indexes, which indicates that

the method can not only locate effectively, but also locate

accurately. Secondly, from the results of attack experi-

ments, DCU-Net had better robustness. For Gaussian noise

attacks, from the detection results of the Casia dataset and

Columbia dataset, the detection method based on deep

learning is generally better than the traditional detection

method, and the phenomenon of detection failure will not

occur as the noise variance increases. DCU-Net further

reduces the influence of Gaussian noise, so as to obtain the

best results compared to other methods. Regarding the

JPEG compression attack, from the experimental results of

the two types of datasets, JPEG compression did not have a

significant impact on the deep learning method. The DCU-

Net model maintains high detection performance even

when the quality factor is minimized. Compared with other

deep learning models, the main advantage of DCU-Net

model is multi-feature fusion, which not only uses the RGB

features of the image, but also applies the tamper boundary

features of the tampered object in the residual image.

Specifically, DCU-Net has designed a dual-channel

Fig. 15 Detection results of

DCU-Net and CFA methods

under two kinds of attacks. a–
c Show the test results of Casia

dataset, and d and e show the

test results of Columbia dataset.

The first and second lines show

the tampered image and the

ground-truth image. The third

and fourth lines show the

detection results of CFA method

and DCU-Net method after

adding JPEG compression

attack; the fifth and sixth lines

show the detection results of

CFA method and DCU-Net

method after adding noise
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structure, namely RGB feature extraction channel and

residual image feature extraction channel, and combined

with the dilated convolution, effectively using the context

semantic information. To sum up, the DCU-Net model

proposed in this paper combined with the corresponding

post-processing operations can not only effectively

improve the accuracy of splicing forgery detection, but also

improve the robustness of detection.

4 Conclusion

We propose an end-to-end dual-channel U-Net model for

image splicing forgery detection, which can accurately

locate the splicing forgery region. The final detection result

of DCU-Net method proposed in this study is to locate the

tampered area at pixel level. In order to achieve more

accurate positioning, we use high-pass filters to extract the

residual image of the tampered image, and add the residual

image to the DCU-Net model. Based on this, we design a

dual-channel input model, in which one channel is used to

input the RGB features of the original tampered image, and

the other channel is used to input the residual image fea-

tures. In our DCU-Net model, the encoder of RGB channel

adopts the model structure of vgg16, which is used to

extract the deep-seated tampering features; the encoder of

the residual image channel adopts the residual structure to

better retain the edge features of the tampered area in the

residual image. In the transition region of encoding and

decoding, we design two feature fusions, which can better

fuse the semantic information of context and provide dif-

ferent scale feature information. In the final detection and

location, we use full connection conditional random field

and opening operation to locate the tampered area detected

by DCU-Net model more precisely. Through the test on

Casia and Columbia data, our method has achieved better

results among the four evaluation indexes. The F-measure,

precision, recall, and accuracy of DCU-Net model on Casia

are 0.8667, 0.8772, 0.8893, and 0.9793, respectively, and

those of F-measure, precision, recall, and accuracy on

Colombia dataset are 0.9498, 0.9871, 0.9176, and 0.9727,

respectively. Finally, we test the robustness of the model

by adding Gaussian noise and JPEG compression attack

into the test image. The test results show that DCU-Net

model has better anti-noise and anti-compression ability

than other detection methods. In summary, the improved

methods proposed in this paper are helpful to improve the

accuracy and robustness of splicing forgery detection.

These methods can provide a new research idea for image

splicing forgery detection.

Although our method shows good performance, it still

has some disadvantages. For example, (1) our method can

only process images of a fixed size; (2)the detection ability

is relatively single, which is only suitable for the detection

of splicing images. Based on this, we will make further

improvements from the above two shortcomings in future

work. Specifically, (1) combine the method in this article

with target detection models (such as Faster R-CNN and

YOLO models) to solve the problem of only processing

fixed-size images; (2) by further exploring the potential

distinguishing features between the tampering/non-tam-

pering areas of more types of forged images, a more gen-

eral detection model can be designed; and (3) combined

with the idea of transfer learning, an effective detection

model suitable for cross-dataset training and detection can

be proposed to improve the generalization ability of the

model.

Acknowledgements This work has been supported by National Key

Research and Development Program of China. The numerical cal-

culations in this paper have been done on the supercomputing system

in the Supercomputing Center of Wuhan University

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

1. Zampoglou M, Papadopoulos S, Kompatsiaris Y (2017) Large-

scale evaluation of splicing localization algorithms for web

images. Multimedia Tools Appl 76(4):4801–4834

2. Joseph RM, Chithra AS (2015) Literature survey on image

manipulation detection. Int Res J Eng Technol (IRJET)

2(04):2395–0056

3. Cozzolino D, Poggi G, Verdoliva L (2015) Efficient dense-field

copy-move forgery detection. IEEE Trans Inf Forensics Secur

10(11):2284–2297

4. Wu Y, Abd-Almageed W, Natarajan P (2018) Busternet:

detecting copy-move image forgery with source/target localiza-

tion. In: Proceedings of the European conference on computer

vision (ECCV). pp 168–184

5. Wu Y, Abd-Almageed W, Natarajan P (2017) Deep matching and

validation network: an end-to-end solution to constrained image

splicing localization and detection. In: Proceedings of the 25th

ACM international conference on multimedia. pp 1480–1502

6. Huh M, Liu A, Owens A, Efros AA (2018) Fighting fake news:

Image splice detection via learned self-consistency. In: Pro-

ceedings of the European conference on computer vision

(ECCV). pp 101–117

7. Zhu X, Qian Y, Zhao X, Sun B, Sun Y (2018) A deep learning

approach to patch-based image inpainting forensics. Signal Pro-

cess Image Commun 67:90–99

8. Zhou P, Han X, Morariu VI, Davis LS (2018) Learning rich

features for image manipulation detection. In: Proceedings of the

IEEE conference on computer vision and pattern recognition.

pp 1053–1061

9. Bappy JH, Simons C, Nataraj L, Manjunath BS, Roy-Chowdhury

AK (2019) Hybrid lstm and encoder-decoder architecture for

detection of image forgeries. IEEE Trans Image Process

28(7):3286–3300

Neural Computing and Applications (2023) 35:5015–5031 5029

123



10. Zeng H, Zhan Y, Kang X, Lin X (2017) Image splicing local-

ization using pca-based noise level estimation. Multimed Tools

Appl 76(4):4783–4799

11. Benrhouma O, Hermassi H, El-Latif Ahmed AA, Belghith S

(2016) Chaotic watermark for blind forgery detection in images.

Multimed Tools Appl 75(14):8695–8718

12. Yao H, Wang S, Zhang X, Qin C, Wang J (2017) Detecting

image splicing based on noise level inconsistency. Multimed

Tools Appl 76(10):12457–12479

13. Liu B, Pun CM (2017) Multi-object splicing forgery detection

using noise level difference. In: 2017 IEEE conference on

dependable and secure computing. IEEE, pp 533–534

14. Zhu N, Li Z (2018) Blind image splicing detection via noise level

function. Signal Process Image Commun 68:181–192

15. Zhang Y, Zhao C, Pi Y, Li S (2012) Revealing image splicing

forgery using local binary patterns of dct coefficients. In: Com-

munications, signal processing, and systems. Springer, New

York, pp 181–189

16. Alahmadi A, Hussain M, Aboalsamh H, Muhammad G, Bebis G,

Mathkour H (2017) Passive detection of image forgery using dct

and local binary pattern. Signal Image Video Process

11(1):81–88

17. Zhang Q, Wei L, Weng J (2016) Joint image splicing detection in

dct and contourlet transform domain. J Vis Commun Image

Represent 40:449–458

18. Han Jong G, Park Tae H, Moon YH, Eom Il K (2018) Quanti-

zation-based markov feature extraction method for image splic-

ing detection. Mach Vis Appl 29(3):543–552

19. Zhao X, Li J, Li S, Wang S (2010) Detecting digital image

splicing in chroma spaces. In: International workshop on digital

watermarking. Springer, pp 12–22

20. Chen B, Qi X, Sun X, Shi YQ (2017) Quaternion pseudo-zernike

moments combining both of rgb information and depth infor-

mation for color image splicing detection. J Vis Commun Image

Represent 49:283–290

21. Liu Q, Cooper Peter A, Chen L, Cho H, Chen Z, Qiao M, Yuting

S, Wei M, Sung AH (2013) Detection of jpeg double compression

and identification of smartphone image source and post-capture

manipulation. Appl Intell 39(4):705–726

22. Mire Archana V, Dhok Sanjay B, Mistry Narendra J, Porey

Prakash D (2018) Automated approach for splicing detection

using first digit probability distribution features. EURASIP J

Image Video Process 2018(1):1–11

23. Amerini I, Becarelli R, Caldelli R, Mastio AD (2014) Splicing

forgeries localization through the use of first digit features. In:

2014 IEEE International workshop on information forensics and

security (WIFS). IEEE, pp 143–148

24. Iakovidou C, Zampoglou M, Papadopoulos S, Kompatsiaris Y

(2018) Content-aware detection of jpeg grid inconsistencies for

intuitive image forensics. J Vis Commun Image Represent

54:155–170

25. Zhao Y, Wang S, Zhang X, Yao H (2012) Robust hashing for

image authentication using zernike moments and local features.

IEEE Trans Inf Forensics Secur 8(1):55–63

26. Tagliasacchi M, Valenzise G, Tubaro S (2009) Hash-based

identification of sparse image tampering. IEEE Trans Image

Process 18(11):2491–2504

27. Wang W, Dong J, Tan T (2009) Effective image splicing

detection based on image chroma. In: 2009 16th IEEE interna-

tional conference on image processing (ICIP). IEEE,

pp 1257–1260

28. Ye S, Sun Q, Chang EC (2007) Detecting digital image forgeries

by measuring inconsistencies of blocking artifact. In: 2007 IEEE

international conference on multimedia and expo. IEEE,

pp 12–15

29. Wang X, Pang K, Zhou X, Zhou Y, Li L, Xue J (2015) A visual

model-based perceptual image hash for content authentication.

IEEE Trans Inf Forensics Secur 10(7):1336–1349

30. Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q

(2020) Imcfn: image-based malware classification using fine-

tuned convolutional neural network architecture. Comput Netw

171:107138

31. Gadekallu TR, Rajput DS, Reddy MPK, Lakshmanna K, Bhat-

tacharya S, Singh S, Jolfaei A, Alazab M (2020) A novel pca–

whale optimization-based deep neural network model for classi-

fication of tomato plant diseases using gpu. J Real-Time Image

Process. pp 1–14

32. Li W, Ding W, Sadasivam Ra, Cui X, Chen P (2019) His-gan: a

histogram-based gan model to improve data generation quality.

Neural Netw 119:31–45

33. Li W, Linchuan X, Liang Z, Wang S, Cao J, Lam TC, Cui X

(2021) Jdgan: enhancing generator on extremely limited data via

joint distribution. Neurocomputing 431:148–162

34. Bhattacharya S, Maddikunta PKR, Pham QV, Gadekallu TR,

Chowdhary CL, Alazab M, Piran MJ et al (2020) Deep learning

and medical image processing for coronavirus (covid-19) pan-

demic: a survey. Sustain Cities Soc 65:102589

35. Sedik A, Hammad M, El-Samie FEA, Gupta BB, El-Latif AAA

(2021) Efficient deep learning approach for augmented detection

of coronavirus disease. Neural Comput Appl 1–18

36. Alghamdi A, Hammad M, Ugail H, Abdel-Raheem A, Muham-

mad K, Khalifa HS, El-Latif AAA (2020) Detection of myocar-

dial infarction based on novel deep transfer learning methods for

urban healthcare in smart cities. Multimed Tools Applications.

pp 1–22

37. Hammad M, Iliyasu AM Subasi A, Ho Edmond SL, El-Latif

Ahmed AA (2020) A multitier deep learning model for arrhyth-

mia detection. IEEE Trans Instrum Meas 70:1–9

38. Li W, Liu X, Liu J, Chen P, Wan S, Cui X (2019) On improving

the accuracy with auto-encoder on conjunctivitis. Appl Soft

Comput 81:105489

39. Wu Y, AbdAlmageed W, Natarajan P (2019) Mantra-net:

manipulation tracing network for detection and localization of

image forgeries with anomalous features. In: Proceedings of the

IEEE conference on computer vision and pattern recognition.

pp 9543–9552

40. Horváth J, Montserrat DM, Hao H, Delp EJ (2020) Manipulation

detection in satellite images using deep belief networks. In:

Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition workshops. pp 664–665

41. Shan W, Yi Y, Qiu J, Yin A (2019) Robust median filtering

forensics using image deblocking and filtered residual fusion.

IEEE Access 7:17174–17183

42. Bappy Jawadul H, Roy-Chowdhury AK, Bunk J, Nataraj L,

Manjunath BS (2017) Exploiting spatial structure for localizing

manipulated image regions. In: Proceedings of the IEEE inter-

national conference on computer vision. pp 4970–4979

43. Yang C, Li H, Lin F, Jiang B, Zhao H (2020) Constrained r-cnn: a

general image manipulation detection model. In: 2020 IEEE

International conference on multimedia and expo (ICME). IEEE,

pp 1–6

44. Xiao B, Wei Y, Bi X, Li W, Ma J (2020) Image splicing forgery

detection combining coarse to refined convolutional neural net-

work and adaptive clustering. Inf Sci 511:172–191

45. Cun X, Pun CM (2018) Image splicing localization via semi-

global network and fully connected conditional random fields. In:

Proceedings of the European conference on computer vision

(ECCV)

46. Bi X, Wei Y, Xiao B, Li W (2019) Rru-net: the ringed residual

u-net for image splicing forgery detection. In: Proceedings of the

5030 Neural Computing and Applications (2023) 35:5015–5031

123



IEEE conference on computer vision and pattern recognition

workshops

47. Zhang R, Ni J (2020) A dense u-net with cross-layer intersection

for detection and localization of image forgery. In: ICASSP

2020-2020 IEEE international conference on acoustics, speech

and signal processing (ICASSP). IEEE, pp 2982–2986

48. El Biach FZ, Iala I, Laanaya H, Minaoui K (2021) Encoder-

decoder based convolutional neural networks for image forgery

detection. Multimed Tools Appl 1–18

49. Rao Y, Ni J, Xie H (2021) Multi-semantic crf-based attention

model for image forgery detection and localization. Signal Pro-

cess 108051

50. Bi X, Liu Y, Xiao B, Li W, Pun CM, Wang G, Gao X (2020)

D-unet: a dual-encoder u-net for image splicing forgery detection

and localization. arXiv preprint arXiv:2012.01821

51. Wu Y, AbdAlmageed W, Natarajan P (2019) ManTra-Net:

manipulation tracing network for detection and localization of

image forgeries with anomalous features. In: Proceedings of the

IEEE conference on computer vision and pattern recognition

(CVPR)
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