Skip to main content
Log in

Fault-tolerant control for uncertain switched random systems with multiple interval time-varying delays and intermittent faults

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper focuses on the passive fault-tolerant control for an uncertain switched nonlinear random system with multiple interval time-varying delays and intermittent faults in sensors and actuators. There are also nonlinear functions, exogenous disturbances and measurement noise in the system. There are few tries to realize noise-to-state exponentially mean-square stability for switched random nonlinear systems subject to multiple interval time-varying delays allowing various time delay cases. Random differential equations are more common than stochastic differential equations in practice. Thus, the suggested method is more practicable. First, a nonlinear dynamic output feedback fault-tolerant controller is constructed. Next, an augmented closed-loop system can be obtained in the framework of multiple interval time-varying delays. Then piecewise Lyapunov function is utilized to realize stability analysis for the closed-loop system. At last, this feasibility of this approach presented in this study is verified through two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun Q, Zhang Y, He H, Ma D, Zhang H (2017) A novel energy function-based stability evaluation and nonlinear control approach for energy internet. IEEE Trans Smart Grid 8(3):1195–1210

    Article  Google Scholar 

  2. Wang R, Sun Q, Ma D, Liu Z (2019) The small-signal stability analysis of the droop-controlled converter in electromagnetic timescale. IEEE Trans Sustain Energy 10(3):1459–1469

    Article  Google Scholar 

  3. Xu S, Tao S, Zheng W, Chai Y, Ma M, Ding L (2021) Multiple open circuit fault diagnosis for back-to-back converter of PMSG wind generation system based on instantaneous amplitude estimation. IEEE Trans Instrum Meas. https://doi.org/10.1109/TIM.2021.3062683

  4. Li T, Yang D, Xie X, Zhang H (2020) Event-triggered control of nonlinear discrete-time system with unknown dynamics based on HDP(\(\lambda\)). IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3044595

  5. Ma TD, Li K, Zhang ZL, Cui B (2021) Impulsive consensus of one-sided Lipschitz nonlinear multi-agent systems with semi-Markov switching topologies. Nonlinear Anal Hybrid Syst 40:101020

    Article  MathSciNet  Google Scholar 

  6. Xu S, Tao S, Chai Y, Huang D, Cheng T (2021) Incipient fault diagnosis and estimation for current senors of PV system based on instantaneous amplitude. Control Decis. https://doi.org/10.13195/j.kzyjc.2020.1261

  7. Han J, Zhang H, Wang Y, Liu X (2017) Anti-disturbance control for nonlinear system via adaptive disturbance observer. Int J Robust Nonlinear Control 27:2121–2144

    Article  MathSciNet  Google Scholar 

  8. Zhai D, An L, Dong J, Zhang Q (2018) Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching. IEEE Trans Fuzzy Syst 26(2):585–597

    Article  Google Scholar 

  9. Tong S, Zhang L, Li Y (2016) Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans Syst Man Cybern Syst 46(1):37–47

    Article  Google Scholar 

  10. Wang Z, Chen G, Ba H (2019) Stability analysis of nonlinear switched systems with sampled-data controllers. Appl Math Comput 33(15):297–309

    MathSciNet  MATH  Google Scholar 

  11. Hashimoto T, Amemiya T (2011) Controllability and observability of linear time-invariant uncertain systems irrespective of bounds of uncertain parameters. IEEE Trans Autom Control 56(8):1807–1817

    Article  MathSciNet  Google Scholar 

  12. Janardhanan S, Bandyopadhyay B (2006) Output feedback sliding-mode control for uncertain systems using fast output sampling technique. IEEE Trans Ind Electron 53(5):1807–1817

    Article  Google Scholar 

  13. Chesi G (2015) Instability analysis of uncertain systems via determinants and LMIs. IEEE Trans Autom Control 60(9):2458–2463

    Article  MathSciNet  Google Scholar 

  14. Zhang X, Lu X (2019) On stability analysis of nonlinear time-delay systems on time scales. Syst Control Lett 131:1–7

    Article  MathSciNet  Google Scholar 

  15. Li X, Yang X, Song S (2019) Lyapunov conditions for finite-time stability of time-varying time-delay systems. Automatica 103:135–140

    Article  MathSciNet  Google Scholar 

  16. Liu K, Selivanov A, Fridman E (2019) Survey on time-delay approach to networked control. Annu Rev Control. https://doi.org/10.1016/j.arcontrol.2019.06.005

  17. Zhang X, Han Q (2006) Delay-dependent robust \(H_\infty\) filtering for uncertain discrete-time systems with time-varying delay based on a finite sum inequality. IEEE Trans Circuits-II 53(12):1466–1470

  18. Gao H, Liu X, Lam J (2009) Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay. IEEE Trans Cybern 39(2):306–317

    Article  Google Scholar 

  19. Chen M, Feng G (2008) Delay-dependent \(H_\infty\) filtering of piecewise-linear systems with time-varying delays. IEEE Trans Circuits-I 55(7):306–317

    MathSciNet  Google Scholar 

  20. Huang S, Yang G (2014) Fault tolerant controller design for T–S fuzzy systems with time-varying delay and actuator faults: a k-step fault-estimation approach. IEEE Trans Fuzzy Syst 22(6):1526–1540

    Article  Google Scholar 

  21. Jiang X, Han Q (2007) Robust \(H_\infty\) control for uncertain Takagi–Sugeno fuzzy systems with interval time-varying delay. IEEE Trans Fuzzy Syst 15(2):321–331

    Article  MathSciNet  Google Scholar 

  22. Jiao T, Xu S, Li Y, Li Z (2015) Adaptive stabilisation of random systems with arbitrary switchings. IET Control Theory Appl. 9(18):2634–2640

    Article  MathSciNet  Google Scholar 

  23. Han J, Zhang HG, Wang YC, Zhang K (2018) Fault estimation and fault-tolerant control for switched fuzzy stochastic systems. IEEE Trans Fuzzy Syst 26(5):2993–3003

    Article  Google Scholar 

  24. Liu M, Cao X, Shi P (2013) Fault estimation and tolerant control for fuzzy stochastic systems. IEEE Trans Fuzzy Syst 21(2):221–229

    Article  Google Scholar 

  25. Liu X, Zhang W, Li Y (2019) \(H\_\) index for continuous-time stochastic systems with Markov jump and multiplicative noise. Automatica 105:167–178

    Article  MathSciNet  Google Scholar 

  26. Yao L, Feng L, Wu Z (2017) Adaptive tracking control for random nonlinear system. Int J Robust Nonlinear Control 27(17):3833–3840

    MathSciNet  MATH  Google Scholar 

  27. Wu Z (2019) Stability criteria of random nonlinear systems and their applications. IEEE Trans Autom Control 60(4):1038–1049

    Article  MathSciNet  Google Scholar 

  28. Gao Z, Lin J, Cao T (2015) Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault. Int J Control Autom 13(3):672–679

    Article  Google Scholar 

  29. Sun S, Zhang H, Zhang J, Zhang K (2020) Fault estimation and tolerant control for discrete-time multiple delayed fuzzy stochastic systems with intermittent sensor and actuator faults. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.2965140

  30. Perk S, Shao QM, Teymour F, Cinar A (2011) An adaptive fault-tolerant control framework with agent-based systems. Int J Robust Nonlinear Control 22(1):43–67

    Article  MathSciNet  Google Scholar 

  31. Zhang K, Jiang B, Staroswiecki M (2010) Dynamic output feedback fault tolerant controller design for Takagi–Sugeno fuzzy systems with actuator faults. IEEE Trans Fuzzy Syst 18(1):194–201

    Article  Google Scholar 

  32. Sun S, Zhang H, Liu C, Liu Y (2020) Dissipativity-based intermittent fault detection and tolerant control for multiple delayed uncertain switched fuzzy stochastic systems with unmeasurable premise variables. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3041125

  33. Xiao C, Yu M, Zhang B, Wang H, Jiang C (2020) Discrete component prognosis for hybrid systems under intermittent faults. IEEE Trans Autom Sci Eng. https://doi.org/10.1109/TASE.2020.3017755

    Article  Google Scholar 

  34. Yu M, Xiao C, Zhang B (2020) Event-triggered discrete component prognosis of hybrid systems using degradation model selection. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2020.3031515

  35. Zhang HG, Han J, Luo CM, Wang YC (2017) Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer. IEEE Trans Fuzzy Syst 47(8):2289–2300

    Google Scholar 

  36. Tao Y, Shen D, Wang Y, Ye Y (2015) Reliable \(H_\infty\) control for uncertain nonlinear discrete-time systems subject to multiple intermittent faults in sensors and/or actuators. J Franklin Inst 352:4721–4740

    Article  MathSciNet  Google Scholar 

  37. Zhang H, Han J, Wang Y, Liu X (2018) Sensor fault estimation of switched fuzzy systems with unknown input. IEEE Trans Fuzzy Syst 26(3):1114–1124

    Google Scholar 

  38. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ, USA

    MATH  Google Scholar 

  39. Jiao T, Xu S, Li Y, Li Z (2015) Adaptive stabilisation of random systems with arbitrary switchings. IET Control Theory Appl 9(18):2634–2640

    Article  MathSciNet  Google Scholar 

  40. Boyd S, Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia, PA

    Book  Google Scholar 

  41. Sun S, Zhang H, Zhang J, Yu L, Sun J (2020) Multiple delay-dependent robust \(H_\infty\) finite-time filtering for uncertain Itô stochastic Takagi–Sugeno fuzzy semi-Markovian jump systems with state constraintss. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.3037959

    Article  Google Scholar 

  42. Wang Y, Zhang H, Wang X, Yang D (2010) Networked synchronization control of coupled dynamic networks with time-varying delay. IEEE Trans Cybern 40(6):1468–1479

    Article  Google Scholar 

  43. Du D, Jiang B, Shi P (2014) Sensor fault estimation and accommodation for discrete-time switched linear systems. IET Control Theory Appl 8(11):960–967

    Article  MathSciNet  Google Scholar 

  44. Han J, Liu X, Wei X, Zhang H, Hu X (2019) Dissipativity-based fault estimation for switched non-linear systems with process and sensor faults. IET Control Theory Appl 13(18):2983–2993

    Article  Google Scholar 

  45. Huang SJ, He XQ, Zhang NN (2011) New results on \(H_\infty\) filter design for nonlinear systems with time delay via T–S fuzzy models. IEEE Trans Fuzzy Syst 19(1):193–199

    Article  Google Scholar 

  46. Jin Y, Zhang Y, Jing Y, Fu J (2018) An average dwell-time method for fault-tolerant control of switched time-delay systems and its application. IEEE Trans Ind Electron 66(4):3139–3147

    Article  Google Scholar 

  47. Yuan S, Schutter BD, Baldi S (2017) Adaptive asymptotic tracking control of uncertain time-driven switched linear systems. IEEE Trans Autom Control 62(11):5802–5807

    Article  MathSciNet  Google Scholar 

  48. Tang L, Zhao J (2019) Switched threshold-based fault detection for switched nonlinear systems with its application to Chua’s Circuit system. IEEE Trans Circuits Syst I Reg Papers 66(2):733–741

    Article  Google Scholar 

  49. Zhang L, Cui N, Liu M, Zhao Y (2011) Asynchronous filtering of discrete-time switched linear systems with average dwell time. IEEE Trans Circuits Syst I, Reg Papers 58(5):1109–1118

    Article  MathSciNet  Google Scholar 

  50. Tan SC, Bronstein S, Nur M, Lai YM, Ioinovici A, Tse CK (2009) Variable structure modeling and design of switched-capacitor converters. IEEE Trans Circuits Syst I, Reg Papers 56(9):2132–2142

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxin Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work. We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no any commercial or associative interest that represents a conflict of interest in connection with the paper submitted.

Acknowledgements This work was supported by Key-Area Research and Development Program of Guangdong Province under Grant 2020B0909020001, the third batch of special grants of China Postdoctoral Science Foundation under Grant 2021TQ0392 and Chongqing Postdoctoral Science Foundation under Grants cstc2020jcyj-bsh0060 and cstc2020jcyj-bshX0100.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Dai, X., Xi, R. et al. Fault-tolerant control for uncertain switched random systems with multiple interval time-varying delays and intermittent faults. Neural Comput & Applic 33, 17471–17487 (2021). https://doi.org/10.1007/s00521-021-06338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06338-3

Keywords

Navigation