Skip to main content
Log in

2D fully chaotic map for image encryption constructed through a quadruple-objective optimization via artificial bee colony algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, a novel 2D fully chaotic map (FULLMAP) derived through a multi-objective optimization strategy with artificial bee colony (ABC) algorithm is introduced for image encryption procedures (IMEPs). First, a model for FULLMAP with eighth decision variables was empirically constituted, and then, the variables were optimally determined using ABC for minimizing a quadruple-objective function composed of Lyapunov exponent (LE), entropy, 0–1 test and correlation coefficient. FULLMAP manifests superior performance in diverse measurements such as bifurcation, 3D phase space, LE, 0–1 test, permutation entropy (PE) and sample entropy (SE). The encryption performance of FULLMAP through an IMEP was verified with respect to various cryptanalyses compared with many reported studies, as well. The main advantage of FULLMAP rather than the optimization-based IMEP studies reported elsewhere is that it need not any optimization in the encryption procedures, and hence, it is faster than the reported procedures. On the other hand, those studies use ciphertext images through IMEPs in every cycle of the optimization. For this reason, they might have long processing time. As a result, the proposed IMEP with FULLMAP demonstrates better cryptanalyses for the most of the compared results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Xuejing K, Zihui G (2020) A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal Process Image Commun 80:1–11. https://doi.org/10.1016/j.image.2019.115670

    Article  Google Scholar 

  2. Alawida M, Samsudin A, Sen TJ, Alkhawaldeh RS (2019) A new hybrid digital chaotic system with applications in image encryption. Signal Process 160:45–58. https://doi.org/10.1016/j.sigpro.2019.02.016

    Article  Google Scholar 

  3. Bao L, Yi S, Zhou Y (2017) Combination of Sharing Matrix and Image Encryption for Lossless (k, n)-Secret Image Sharing. IEEE Trans Image Process 26:5618–5631. https://doi.org/10.1109/TIP.2017.2738561

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang F, Kodituwakku HADE, Hines JW, Coble J (2019) Multilayer Data-Driven Cyber-Attack Detection System for Industrial Control Systems Based on Network, System, and Process Data. IEEE Trans Ind Informatics 15:4362–4369. https://doi.org/10.1109/TII.2019.2891261

    Article  Google Scholar 

  5. Chen J, Chen L, Zhou Y (2020) Cryptanalysis of a DNA-based image encryption scheme. Inf Sci (Ny) 520:130–141. https://doi.org/10.1016/j.ins.2020.02.024

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu Y, Qin Z, Liao X, Wu J (2020) Cryptanalysis and enhancement of an image encryption scheme based on a 1-D coupled Sine map. Nonlinear Dyn 100:2917–2931. https://doi.org/10.1007/s11071-020-05654-y

    Article  Google Scholar 

  7. Hua Z, Zhu Z, Yi S et al (2021) Cross-plane colour image encryption using a two-dimensional logistic tent modular map. Inf Sci (Ny) 546:1063–1083. https://doi.org/10.1016/j.ins.2020.09.032

    Article  MathSciNet  Google Scholar 

  8. Talhaoui MZ, Wang X (2020) A new fractional one dimensional chaotic map and its application in high-speed image encryption. Inf Sci (Ny). https://doi.org/10.1016/j.ins.2020.10.048

    Article  Google Scholar 

  9. Wen W, Wei K, Zhang Y et al (2020) Colour light field image encryption based on DNA sequences and chaotic systems. Nonlinear Dyn 99:1587–1600. https://doi.org/10.1007/s11071-019-05378-8

    Article  Google Scholar 

  10. Zheng P, Huang J (2018) Efficient Encrypted Images Filtering and Transform Coding with Walsh-Hadamard Transform and Parallelization. IEEE Trans Image Process 27:2541–2556. https://doi.org/10.1109/TIP.2018.2802199

    Article  MathSciNet  MATH  Google Scholar 

  11. Ćalasan M, Abdel Aleem SHE, Bulatović M et al (2021) Design of controllers for automatic frequency control of different interconnection structures composing of hybrid generator units using the chaotic optimization approach. Int J Electr Power Energy Syst 129:106879. https://doi.org/10.1016/j.ijepes.2021.106879

    Article  Google Scholar 

  12. Pierezan J, dos Santos CL, Cocco Mariani V et al (2021) Chaotic coyote algorithm applied to truss optimization problems. Comput Struct 242:106353. https://doi.org/10.1016/j.compstruc.2020.106353

    Article  Google Scholar 

  13. Yousri D, Allam D, Eteiba MB (2019) Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in Permanent Magnet Synchronous Motor. Appl Soft Comput J 74:479–503. https://doi.org/10.1016/j.asoc.2018.10.032

    Article  Google Scholar 

  14. Coelho LDS, Mariani VC, Guerra FA et al (2014) Multiobjective optimization of transformer design using a chaotic evolutionary approach. IEEE Trans Magn 50:669–672. https://doi.org/10.1109/TMAG.2013.2285704

    Article  Google Scholar 

  15. Okamoto T, Hirata H (2013) Global optimization using a multipoint type quasi-chaotic optimization method. Appl Soft Comput J 13:1247–1264. https://doi.org/10.1016/j.asoc.2012.10.025

    Article  Google Scholar 

  16. dos Coelho L, S, Mariani VC, (2009) A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos, Solitons Fractals 39:510–518. https://doi.org/10.1016/j.chaos.2007.01.093

    Article  Google Scholar 

  17. Chai X, Gan Z, Yuan K et al (2019) A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Comput Appl 31:219–237. https://doi.org/10.1007/s00521-017-2993-9

    Article  Google Scholar 

  18. Wang X, Li Y (2021) Chaotic image encryption algorithm based on hybrid multi-objective particle swarm optimization and DNA sequence. Opt Lasers Eng 137:106393. https://doi.org/10.1016/j.optlaseng.2020.106393

    Article  Google Scholar 

  19. Ahmad M, Alam MZ, Umayya Z et al (2018) An image encryption approach using particle swarm optimization and chaotic map. Int J Inf Technol 10:247–255. https://doi.org/10.1007/s41870-018-0099-y

    Article  Google Scholar 

  20. Kaur M, Kumar V, Li L (2019) Color image encryption approach based on memetic differential evolution. Neural Comput Appl 31:7975–7987. https://doi.org/10.1007/s00521-018-3642-7

    Article  Google Scholar 

  21. Dua M, Wesanekar A, Gupta V et al (2020) Differential evolution optimization of intertwining logistic map-DNA based image encryption technique. J Ambient Intell Humaniz Comput 11:3771–3786. https://doi.org/10.1007/s12652-019-01580-z

    Article  Google Scholar 

  22. Saravanan S, Sivabalakrishnan M (2021) A hybrid chaotic map with coefficient improved whale optimization-based parameter tuning for enhanced image encryption. Soft Comput 48:1–24. https://doi.org/10.1007/s00500-020-05528-w

    Article  Google Scholar 

  23. Wang H, Xiao D, Chen X, Huang H (2018) Cryptanalysis and enhancements of image encryption using combination of the 1D chaotic map. Signal Process 144:444–452. https://doi.org/10.1016/j.sigpro.2017.11.005

    Article  Google Scholar 

  24. Mansouri A, Wang X (2020) A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme. Inf Sci (Ny) 520:46–62. https://doi.org/10.1016/j.ins.2020.02.008

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu J, Liao X, Yang B (2018) Image encryption using 2D Hénon-Sine map and DNA approach. Signal Process 153:11–23. https://doi.org/10.1016/j.sigpro.2018.06.008

    Article  Google Scholar 

  26. Chen C, Sun K, He S (2020) An improved image encryption algorithm with finite computing precision. Signal Process 168:1–10. https://doi.org/10.1016/j.sigpro.2019.107340

    Article  Google Scholar 

  27. Su Y, Tang C, Chen X et al (2017) Cascaded Fresnel holographic image encryption scheme based on a constrained optimization algorithm and Henon map. Opt Lasers Eng 88:20–27. https://doi.org/10.1016/j.optlaseng.2016.07.012

    Article  Google Scholar 

  28. Farah MAB, Guesmi R, Kachouri A, Samet M (2020) A novel chaos based optical image encryption using fractional Fourier transform and DNA sequence operation. Opt Laser Technol 121:105777. https://doi.org/10.1016/j.optlastec.2019.105777

    Article  MATH  Google Scholar 

  29. Kaur M, Singh D, Uppal RS (2020) Parallel strength Pareto evolutionary algorithm-II based image encryption. IET Image Process 14:1015–1026. https://doi.org/10.1049/iet-ipr.2019.0587

    Article  Google Scholar 

  30. Asgari-Chenaghlu M, Feizi-Derakhshi MR, Nikzad-Khasmakhi N et al (2021) Cy: Chaotic yolo for user intended image encryption and sharing in social media. Inf Sci (Ny) 542:212–227. https://doi.org/10.1016/j.ins.2020.07.007

    Article  Google Scholar 

  31. Enayatifar R, Guimarães FG, Siarry P (2019) Index-based permutation-diffusion in multiple-image encryption using DNA sequence. Opt Lasers Eng 115:131–140. https://doi.org/10.1016/j.optlaseng.2018.11.017

    Article  Google Scholar 

  32. Chai X, Bi J, Gan Z et al (2020) Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Process 176:107684. https://doi.org/10.1016/j.sigpro.2020.107684

    Article  Google Scholar 

  33. Suri S, Vijay R (2020) A Pareto-optimal evolutionary approach of image encryption using coupled map lattice and DNA. Neural Comput Appl 32:11859–11873. https://doi.org/10.1007/s00521-019-04668-x

    Article  Google Scholar 

  34. Kaur M, Singh D (2020) Multiobjective evolutionary optimization techniques based hyperchaotic map and their applications in image encryption. Multidimens Syst Signal Process 32:281–301. https://doi.org/10.1007/s11045-020-00739-8

    Article  MATH  Google Scholar 

  35. Yang Y, Wang L, Duan S, Luo L (2021) Dynamical analysis and image encryption application of a novel memristive hyperchaotic system. Opt Laser Technol 133:106553. https://doi.org/10.1016/j.optlastec.2020.106553

    Article  Google Scholar 

  36. Hanis S, Amutha R (2019) A fast double-keyed authenticated image encryption scheme using an improved chaotic map and a butterfly-like structure. Nonlinear Dyn 95:421–432. https://doi.org/10.1007/s11071-018-4573-7

    Article  Google Scholar 

  37. Asgari-Chenaghlu M, Balafar MA, Feizi-Derakhshi MR (2019) A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Signal Process 157:1–13. https://doi.org/10.1016/j.sigpro.2018.11.010

    Article  Google Scholar 

  38. Lan R, He J, Wang S et al (2018) Integrated chaotic systems for image encryption. Signal Process 147:133–145. https://doi.org/10.1016/j.sigpro.2018.01.026

    Article  Google Scholar 

  39. Chai X, Fu X, Gan Z et al (2019) A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process 155:44–62. https://doi.org/10.1016/j.sigpro.2018.09.029

    Article  Google Scholar 

  40. Hua Z, Zhou Y, Huang H (2019) Cosine-transform-based chaotic system for image encryption. Inf Sci (Ny) 480:403–419. https://doi.org/10.1016/j.ins.2018.12.048

    Article  Google Scholar 

  41. Sreelaja NK, Vijayalakshmi Pai GA (2012) Stream cipher for binary image encryption using Ant Colony Optimization based key generation. Appl Soft Comput J 12:2879–2895. https://doi.org/10.1016/j.asoc.2012.04.002

    Article  Google Scholar 

  42. Carbas S, Toktas A, Ustun D (2021) Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications. Springer Singapore

  43. Li G, Liu L, Feng X (2019) Accelerating GPU Computing at Runtime with Binary Optimization. In: CGO 2019 - Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization. Institute of Electrical and Electronics Engineers Inc., pp 276–277

  44. Premkumar M, Jangir P, Sowmya R (2021) MOGBO: A new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems. Knowledge-Based Syst 218:106856. https://doi.org/10.1016/j.knosys.2021.106856

    Article  Google Scholar 

  45. Moreno SR, Pierezan J, dos Coelho L, S, Mariani VC, (2021) Multi-objective lightning search algorithm applied to wind farm layout optimization. Energy 216:119214. https://doi.org/10.1016/j.energy.2020.119214

    Article  Google Scholar 

  46. Vasconcelos Segundo EH, de, Mariani VC, Coelho L dos S, (2019) Metaheuristic inspired on owls behavior applied to heat exchangers design. Therm Sci Eng Prog 14:100431. https://doi.org/10.1016/j.tsep.2019.100431

    Article  Google Scholar 

  47. Rubio-Largo Á, Vega-Rodríguez MA, González-Álvarez DL (2016) Hybrid multiobjective artificial bee colony for multiple sequence alignment. Appl Soft Comput J 41:157–168. https://doi.org/10.1016/j.asoc.2015.12.034

    Article  Google Scholar 

  48. Zhou X, Liu Y, Li B, Sun G (2015) Multiobjective biogeography based optimization algorithm with decomposition for community detection in dynamic networks. Phys A Stat Mech its Appl 436:430–442. https://doi.org/10.1016/j.physa.2015.05.069

    Article  MATH  Google Scholar 

  49. Sajasi S, Eftekhari Moghadam AM (2015) An adaptive image steganographic scheme based on Noise Visibility Function and an optimal chaotic based encryption method. Appl Soft Comput J 30:375–389. https://doi.org/10.1016/j.asoc.2015.01.032

    Article  Google Scholar 

  50. Alkebsi K, Du W (2020) A Fast Multi-Objective Particle Swarm Optimization Algorithm Based on a New Archive Updating Mechanism. IEEE Access 8:124734–124754. https://doi.org/10.1109/ACCESS.2020.3007846

    Article  Google Scholar 

  51. Demertzis K, Iliadis L (2017) Adaptive elitist differential evolution extreme learning machines on big data: Intelligent recognition of invasive species. In: Advances in Intelligent Systems and Computing. Springer Verlag, pp 333–345

  52. Arora S, Singh S (2016) Butterfly algorithm with Lèvy Flights for global optimization. In: Proceedings of 2015 International Conference on Signal Processing, Computing and Control, ISPCC 2015. Institute of Electrical and Electronics Engineers Inc., pp 220–224

  53. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  54. Toktas A, Ustun D (2020) Triple-Objective Optimization Scheme Using Butterfly-Integrated ABC Algorithm for Design of Multilayer RAM. IEEE Trans Antennas Propag 68:5603–5612. https://doi.org/10.1109/TAP.2020.2981728

    Article  Google Scholar 

  55. Toktas A, Ustun D, Tekbas M (2020) Global optimisation scheme based on triple-objective ABC algorithm for designing fully optimised multi-layer radar absorbing material. IET Microwaves, Antennas Propag 14:800–811. https://doi.org/10.1049/iet-map.2019.0868

    Article  Google Scholar 

  56. Toktas A, Ustun D, Erdogan N (2020) Pioneer Pareto artificial bee colony algorithm for three-dimensional objective space optimization of composite-based layered radar absorber. Appl Soft Comput 96:1–12. https://doi.org/10.1016/j.asoc.2020.106696

    Article  Google Scholar 

  57. Akdagli A, Toktas A (2010) A novel expression in calculating resonant frequency of H-shaped compact microstrip antennas obtained by using artificial bee colony algorithm. J Electromagn Waves Appl 24:2049–2061. https://doi.org/10.1163/156939310793675989

    Article  Google Scholar 

  58. Toktas A (2021) Multi-objective design of multilayer microwave dielectric filters using artificial bee colony algorithm. In: Carbas S, Toktas A, Ustun D (eds) Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications. Springer Singapore

  59. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467. https://doi.org/10.1038/261459a0

    Article  MATH  Google Scholar 

  60. Gottwald GA, Melbourne I (2016) The 0–1 test for chaos: A review. In: Lecture Notes in Physics. Springer Verlag, pp 221–247

  61. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate and sample entropy. Am J Physiol - Hear Circ Physiol 278:2039–2049. https://doi.org/10.1152/ajpheart.2000.278.6.h2039

    Article  Google Scholar 

  62. Bandt C, Pompe B (2002) Permutation Entropy: A Natural Complexity Measure for Time Series. Phys Rev Lett 88:4. https://doi.org/10.1103/PhysRevLett.88.174102

    Article  Google Scholar 

  63. Yang F, Mou J, Liu J et al (2020) Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process 169:1–16. https://doi.org/10.1016/j.sigpro.2019.107373

    Article  Google Scholar 

  64. Wu Y, Zhang L, Qian T et al (2021) Content-adaptive image encryption with partial unwinding decomposition. Signal Process 181:107911. https://doi.org/10.1016/j.sigpro.2020.107911

    Article  Google Scholar 

  65. Luo Y, Lin J, Liu J et al (2019) A robust image encryption algorithm based on Chua’s circuit and compressive sensing. Signal Process 161:227–247. https://doi.org/10.1016/j.sigpro.2019.03.022

    Article  Google Scholar 

  66. Chai X, Zheng X, Gan Z et al (2018) An image encryption algorithm based on chaotic system and compressive sensing. Signal Process 148:124–144. https://doi.org/10.1016/j.sigpro.2018.02.007

    Article  Google Scholar 

  67. Wang X, Gao S (2020) Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf Sci (Ny) 539:195–214. https://doi.org/10.1016/j.ins.2020.06.030

    Article  MathSciNet  MATH  Google Scholar 

  68. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16:2129–2151. https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang X, Zhao Z, Wang J (2014) Chaotic image encryption based on circular substitution box and key stream buffer. Signal Process Image Commun 29:902–913. https://doi.org/10.1016/j.image.2014.06.012

    Article  Google Scholar 

  70. Asuni N, Giachetti A (2014) TESTIMAGES: a large-scale archive for testing visual devices and basic image processing algorithms. In: Giachetti A (ed) STAG: Smart Tools & Apps for Graphics (2014). The Eurographics Association

  71. Wu Y, Noonan JP, Agaian S (2011) NPCR and UACI Randomness Tests for Image Encryption. Cyber Journals Multidiscip Journals Sci Technol J Sel Areas Telecommun 31–38

  72. Enginoğlu S, Erkan U, Memiş S (2019) Pixel similarity-based adaptive Riesz mean filter for salt-and-pepper noise removal. Multimed Tools Appl. https://doi.org/10.1007/s11042-019-08110-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Erkan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toktas, A., Erkan, U. 2D fully chaotic map for image encryption constructed through a quadruple-objective optimization via artificial bee colony algorithm. Neural Comput & Applic 34, 4295–4319 (2022). https://doi.org/10.1007/s00521-021-06552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06552-z

Keywords

Navigation