Skip to main content
Log in

Tuning of LQR-PID controller to control parallel manipulator

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The paper presents mathematical modeling and optimal path control of a 3-DOF Maryland manipulator. Three dissimilar and consecutive paths are taken under observation, and control action is performed by linear quadratic regulator (LQR)-based proportional–integral–derivative (PID) controller. To achieve optimal path tracking control, tuning of PID gain parameters is necessary and it is done by optimal selection of weighting matrices of LQR. The evolutionary optimization algorithms like GA and PSO are used in the past for the optimal selection of LQR parameters for tuning of PID gain parameter, but both the methods fail to achieve accurate trajectory tracking control because the simulation results show higher values of fitness function (J), sum square error, integral square error, and integral absolute error between the desired and the actual trajectory for all joint angles, as discussed in the result analysis section. The gray wolf optimizer (GWO) algorithm is then proposed; this method provides optimal values of gain parameters. The simulation results show that the values of all types of error and fitness function for all joint angles are quite lesser than GA and PSO. Hence, the proposed GWO proves better among all and it provides high accuracy in trajectory tracking control with better performance indices. To demonstrate the proposed algorithm, the mathematical simulations are performed as well as the conduction of experimental work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stewart D (1965) A platform with six degrees of freedom. Proc Inst Mech Eng 180(1):371–386

    Article  Google Scholar 

  2. Li Y, Xu Q (2007) Design and development of a medical parallel robot for cardiopulmonary resuscitation. IEEE Trans Mechatron 12(3):265–273

    Article  Google Scholar 

  3. Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y (2003) Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom 19(5):893–901

    Article  Google Scholar 

  4. Xu WL, Pap JS, Bronlund J (2008) Design of a biologically inspired parallel robot for foods chewing. IEEE Trans Industr Electron 55(2):832–841

    Article  Google Scholar 

  5. Xu WL, Torrance JD, Chen BQ, Potgieter J, Bronlund JE, Pap JS (2008) Kinematics and experiments of a life-sized masticatory robot for characterizing food texture. IEEE Trans Industr Electron 55(5):2121–2132

    Article  Google Scholar 

  6. Ottaviano E, Ceccarelli M (2006) Application of a 3-DOF parallel manipulator for earthquake simulations. IEEE Trans Mechatron 11(2):241–246

    Article  Google Scholar 

  7. Yoon WK, Suehiro T, Tsumaki Y, Uchiyama M (2004) Stiffness analysis and design of a compact modified delta parallel mechanism. Robotica 22(4):463–475

    Article  Google Scholar 

  8. Ramadan AA, Takubo T, Mae Y, Oohara K, Arai T (2009) Developmental process of a chopstick-like hybrid-structure two-fingered micro manipulator hand for 3-Dmanipulation of microscopic objects. IEEE Trans Industr Electron 56(4):1121–1135

    Article  Google Scholar 

  9. Berenguer FJ, Huelin FMM (2008) Zappa, A quasi-passive biped walking robot with a tail: Modeling, behavior, and kinematic estimation using accelerators. IEEE Trans Ind Electron 55(9):3281–3289

    Article  Google Scholar 

  10. Pierrot F, Nabat V, Company O, Krut S, Poignet P (2009) Optimal design of a 4-DOF parallel manipulator: from academia to industry. IEEE Trans Rob 25(2):213–224

    Article  Google Scholar 

  11. Huang T, Chetwynd DG, Mei JP, Zhao XM (2006) Tolerance design of a 2-DOF over constrained translational parallel robot. IEEE Trans Rob 22(1):167–172

    Article  Google Scholar 

  12. Ren L, Mills JK, Sun D (2008) Trajectory tracking control for a 3-DOF planar parallel manipulator using the convex synchronized control method. IEEE Trans Control Syst Technol 16(4):613–623

    Article  Google Scholar 

  13. Chaudhary G, Ohri J (2016) “3-DOF Parallel manipulator control using PID controller”, IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, 1–6

  14. Su YX, Duan BY, Zheng CH (2004) Nonlinear PID control of a six DOF parallel manipulator. IEEE Proc Control Theory Appl 151(1):95–102

    Article  Google Scholar 

  15. Li Y, Wang Y (2009) Trajectory tracking control of a redundantly actuated parallel robot using diagonal recurrent neural network, in Proceedings International Conference Natural Computing, Tianjin, China, IEEE, 292–296

  16. Hamamci SE (2007) An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans Autom Control 52(10):1964–1969

    Article  MathSciNet  MATH  Google Scholar 

  17. Efe MÖ (2011) Neural network assisted computationally simple PIλDμ control of a quadrotor UAV. IEEE Trans Industr Inf 7(2):354–361

    Article  Google Scholar 

  18. Ahmed A (2019) Controllers comparison to balancing and trajectory tracking a two wheeled mobile robot. Int J Robot Autom (IJRA) 5(1):28–31

    Article  Google Scholar 

  19. Das S, Pan I, Halder K, Das S, Gupta A (2013) LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index. Appl Math Model 37(6):4253–4268

    Article  MathSciNet  Google Scholar 

  20. Saha S, Das S, Das S, Gupta A (2012) A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement. Commun Nonlinear Sci Numer Simul 17(9):3628–3642

    Article  MathSciNet  MATH  Google Scholar 

  21. Verma SK, Yadav S, Nagar SK (2017) Optimization of fractional order PID controller using grey wolf optimizer. J Control Autom Elect Syst 28(3):314–322

    Article  Google Scholar 

  22. Razmjooy N, Ramezani M, Namadchian A (2016) A new LQR optimal control for a single-link flexible joint robot manipulator based on grey wolf optimizer. Majlesi J Elect Eng 10(3):53–60

    Google Scholar 

  23. Altinoz OT (2018) Multi objective PID controller design for active suspension system: scalarization approach. Int J Optim Control Theor Appl 8(2):183–194

    Article  MathSciNet  Google Scholar 

  24. Oh SK, Jang HJ, Pedrycz W (2011) A, comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization. Expert Syst Appl 38(9):11217–11229

    Article  Google Scholar 

  25. Bharadwaj CS, Babu TS, Rajasekar N (2018) Tuning PID controller for inverted pendulum using genetic algorithm. Adv Syst Control Autom 442:395–404

    Article  Google Scholar 

  26. Wang L, Luo C, Li M, Cai J (2017) Trajectory planning of an autonomous mobile robot by evolving ant colony system. Int J Robot Autom (IJRA) 32(4):406–413

    Google Scholar 

  27. Sheng L, Li W (2018) Optimization design by genetic algorithm controller for trajectory control of a 3-RRR parallel robot. Algorithms J 11(7):2–13

    MathSciNet  Google Scholar 

  28. Shao X, Zhang J, Zhang X (2019) Takagi-Sugeno fuzzy modeling and PSO-based robust LQR anti-swing control for overhead crane. Hindawi Math Problems Eng 2019(21):1–14

    MATH  Google Scholar 

  29. Şen MA, Kalyoncu M (2019) Grey wolf optimizer based tuning of a hybrid LQR-PID controller for foot trajectory control of a quadruped robot. Gazi Univ J Sci 32(2):674–684

    Google Scholar 

  30. Tsai LW, Stamper R (1997) A parallel manipulator with only translational degrees of freedom, presented at the Proceedings of ASME, design engineering technology conference, Irvine, CA, USA, 1–18

  31. Tsai LW (1999) Robot analysis and design: the mechanics of serial and parallel manipulators. John Wiley, Hoboken, New York, USA, pp 134–142

    Google Scholar 

  32. Bolandi H, Esmaeilzadeh SM (2011) Exact tip trajectory tracking control of a flexible robot arm. Int J Robot Autom 26(1):100–109

    Google Scholar 

  33. Li S, Wenfeng Wu, Ma D (2018) MPPT of photovoltaic system variable acceleration disturbance method based on genetic algorithm. Int J Robot Autom (IJRA) 33(2):179–185

    Google Scholar 

  34. Alajlan M, Chaari I, Koubaa A, Bennaceur H, Ammar A, Youssef H (2016) Global robot path planning using GA for large grid maps: modelling, performance and experimentation. Int J Robot Autom 31(6):1–12

    Google Scholar 

  35. Kennedy J, Sammut C, Webb GI (2011) Particle swarm optimization, encyclopedia of machine learning. Springer, Washington, USA, pp 760–766

    Google Scholar 

  36. Panda S, Padhy NP (2008) Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Int J Appl Soft Comput 8(4):1418–1427

    Article  Google Scholar 

  37. Ekinci S (2016) Application and comparative performance analysis of PSO and ABC algorithms for optimal design of multi-machine power system stabilizers. Gazi Univ J Sci 29(2):323–334

    Google Scholar 

  38. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69(7):46–61

    Article  Google Scholar 

  39. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-cost grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47(10):106–119

    Article  Google Scholar 

  40. Mirjalili S (2015) How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl Intell 43(1):150–161

    Article  Google Scholar 

  41. Shahrzad S, Mirjalili SZ, Mirjalili SM (2014) Evolutionary population dynamics and grey wolf optimizer. Neural Comput Appl 26(5):1257–1263

    Google Scholar 

  42. Sánchez D, Melin P, Castillo O (2017) A grey wolf optimizer for modular granular neural networks for human recognition. Hindawi Comput Intell Neurosci 2017(8):1–26

    Google Scholar 

  43. Choubey C, Ohri J (2021) Optimal trajectory generation for a 6-DOF parallel manipulator using grey wolf optimization algorithm. Robotica 39(3):411–427

    Article  Google Scholar 

  44. Ghoreishi SA, Nekoui MA (2012) Optimal weighting matrices design for LQR controller based on genetic algorithm and PSO. Adv Mater Res 433–440:7546–7553

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Choubey.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choubey, C., Ohri, J. Tuning of LQR-PID controller to control parallel manipulator. Neural Comput & Applic 34, 3283–3297 (2022). https://doi.org/10.1007/s00521-021-06608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06608-0

Keywords

Navigation