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Abstract
Twitter has been a remarkable resource for research in pharmacovigilance in the last decade. Traditionally, rule- or

lexicon-based methods have been utilized for automatically extracting drug tweets for human annotation. The process of

human annotation to create labeled sets for machine learning models is laborious, time consuming and not scalable. In this

work, we demonstrate the feasibility of applying weak supervision (noisy labeling) to select drug data, and build machine

learning models using large amounts of noisy labeled data instead of limited gold standard labelled sets. Our results

demonstrate the models built with large amounts of noisy data achieve similar performance than models trained on limited

gold standard datasets, hence demonstrating that weak supervision helps reduce the need to rely on manual annotation,

allowing more data to be easily labeled and useful for downstream machine learning applications, in this case drug mention

identification.
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1 Introduction

Social media, especially Twitter, has an abundance of data

generated every day. On average, Twitter users generate

500 million tweets every day. In a review study [1] on

Pharmacovigilance and Social media, 32 studies either

used a lexicon-based method or a supervised learning

method. Supervised learning techniques have achieved

great success when there is strong supervision information

like a large amount of training samples with ground-truth

labels [2]. However, generating large training data with

ground-truth labels is very expensive, tedious and time

consuming. Since the availability of annotated data is

limited, several researchers train the model with limited

data and test the model on a small test set. These models

are not scalable because they don’t work well with large

data. The new state-of-the-art models like BERT [3],

trained on millions of parameters, demonstrated excep-

tional performance on several Natural Language Process-

ing (NLP) tasks, while the supervised learning techniques

are limited to smaller datasets due to manual annotation

process.

While Twitter is an immense resource for research, on

the downside, researchers cannot share tweet text directly

and are only allowed to share tweet identifiers. Twitter

users often delete their tweets, causing loss of data and

wasted annotation effort (if the original authors do not save

a copy). A research study [4], which utilized a publicly

available annotated dataset [5], could hydrate only 66% of

the original data and could not reproduce the original

model to compare results. Thus, there is a huge need to

avoid reliance on manual annotation of small datasets and

to move to automatic annotation on large datasets.

Weak Supervision utilizes noisy, limited, or imprecise

sources to provide a supervision signal for labeling large

amounts of training data in a supervised learning setting

[6]. To decrease the labelling costs, researchers have been

using weaker forms of supervision, such as heuristically

generating training data with external knowledge bases,

patterns/rules, or other classifiers. The assumption behind

our work is that the large volume of training data which can
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be collected using an automated labeling process can

compensate for the inaccuracy in the labels. We base our

assumption on the theory of noise-tolerant learning [7]. By

imposing a bound on the labeling error and by using a

sufficient number of training samples, models trained from

very large data sets with noisy labels can be as good as

those trained from data sets with clean labels. If successful,

the use of such noise-tolerant learning can be scaled to

several domains. Weak supervision is highly reliant on

heuristics or labelling functions. Inclusion of bad heuristics

will result in inclusion of poor data which in turn affects

the machine learning models.

1.1 Theory of noisy learning

It is mathematically proven that addition of noise during

the training of a neural network model has a regularization

effect and, in turn, improves the robustness of the model

[8]. However, the important question to envisage is how

much noisy data are required to obtain a model with sat-

isfactory performance. Simon [9] and later Aslam et al.

[10] formulated the theory as a sample complexity bound

which is also verified in a phenotype research [11]. The

bound can be calculated as:

m � O
VC Hð Þ

c 1� 2sð Þ2
þ log 1=dð Þ
c 1� 2sð Þ2

" #

where c[ 0 and 0 B d B 1. where s as the random clas-

sification error for data distribution of observations and

noisy labels, H as the class of learning algorithms to which

our models belong, ĥ as a model in H and trained on a set

of m observations drawn from data, h* as a model in H that

best fits the target distribution consisting of correct obser-

vations and correct labels, e(ĥ) as the generalization error

of ĥ and e(h*) as the generalization error of h*.

The case s = 0 corresponds to observation data with

clean labels and the case s = 0.5 represents the random

flipping of labels that makes learning impossible. For a

given error bound c, probability 1 - d, and classification

error rate s, a learning algorithm can learn equally well

from approximately m*(1 2 2s)2 observations of noisy

data of what it can learn from m observations of clean data.

The important aspect to note is that it is easier to obtain

m*(1 2 2s)2 noisy observations than to acquire m clean

data. We computed the theoretical bounds, and the results

are presented in the Results section.

2 Related work

Pharmacovigilance is defined as the science and activities

relating to the detection, assessment, understanding and

prevention of adverse effects or any other possible drug-

related problems [12]. Machine learning and NLP tech-

niques have been applied to several applications in phar-

macovigilance such as identifying adverse drug reactions

[13], analyzing twitter data for post marketing surveillance

[14], analyzing prescription drug abuse, applications to

identify misspelled drug mention tweets in tweets to obtain

more data [15, 16]. Several classical and deep learning

models were utilized for supervised learning. While the

supervised learning approach is efficient, there is a bot-

tleneck to using the approach due to the manual annotation

process involved.

In this work, we demonstrate the usage of weak super-

vision to identify drug mentions from noisy Twitter data.

Instead of manually annotating data, we utilized a heuristic

approach to curate the noisy data, i.e., silver standard data

to train several machine learning models. We emphasize

that we did not add noise nor modify the data. Instead of

using gold standard annotated labels, we made use of our

noisy data and trained several machine learning models to

identify drug tweets.

3 Data preparation

In our previous work [17], we mined over 6 million English

drug tweets from 9 billion tweets utilizing a heuristic

approach using Social Media Mining Toolkit (SMMT)

[18]. The 6 million tweets contain considerable noise due

to several irrelevant terms (Example: solution, predator) in

the dictionary. In order to eliminate irrelevant noise, we

cleaned up the drug dictionary by removing terms which

are commonly used in English (Example: patch). Addi-

tionally, we also removed all the terms with length greater

than 38 characters since the longest term tagged from 9

billion tweets was only 37 characters. We used the updated

drug dictionary which consists of 19,643 terms and sepa-

rated 4,214,737 tweets from 6 million tweets. Each tweet

text consists of at least one drug term from the dictionary.

All the tweets were preprocessed by removing emojis,

emoticons, URLs, leading and trailing whitespaces. All the

preprocessed drug tweets were labelled as ‘‘drug tweets.’’

Listed below are a few samples of the preprocessed tweets

obtained through heuristics. The drug terms are highlighted

in bold.

(1) ‘‘health melatonin and exercise key combination for

helping with alzheimers’’
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(2) ‘‘i hate having breathing problems to where i have to

take up to 2–3 xanax at once just to slow down my

heart beat’’

(3) ‘‘hopefully this tylenol breaks my fever’’

Tweet text cannot be shared publicly, and hence tweet

ids are made available through our dataset paper [17]

which can be hydrated using SMMT. We collected an

equal number of non-drug tweets from Internet Archive

[19] which is the same source utilized in our previous work

[17] in order to have a language balanced dataset. To avoid

the language bias, we retrieved non drug tweets randomly

from the same years as the drug tweets. All the non-drug

tweets were preprocessed and labeled as ‘‘non-drug

tweets.’’ We created 10 different class balanced training

sets for 7 different training sizes. A total of 70 training sets

were used in our methodology. Table 1 describes the

details of each training set and the total number of datasets.

To create the training sets, the data were randomly sampled

for all the training sizes from the pool of drug and non-drug

tweets. The smaller training sizes (e.g., 100,000, 200,000,

300,000) have no overlapping data among different train-

ing sets. However, for the larger training sizes (e.g., 2

million), there is an overlap in the data since the drug

tweets pool contains only * 4 million tweets. Each

training set in a training size contains an equal number of

drug and non-drug tweets. For example, the 100 k training

set consists of randomly shuffled 100,000 drug tweets and

100,000 non-drug tweets. For each training set in the

training size, we split the data into 80% (training dataset)

and 20% (validation dataset).

In order to create the test set, we collected publicly

available manually and expertly curated datasets [5, 20].

Due to Twitter’s terms and conditions, the authors could

only release the tweet identifiers and we hydrated the tweet

json objects and extracted tweet text. A total of 7215

annotated tweets were publicly available at the time of

experiments and were hydrated and preprocessed using

SMMT. To have a balanced test set, we added 7215 non-

drug tweets totaling 14,430 tweets, which is used as the test

set in our methods. We would like to emphasize that we did

not manually annotate any tweets and instead used publicly

available, manually and expertly annotated drug tweets in

our test set.

4 Methods

We experimented with several classical and deep learning

models using our preprocessed training and test datasets.

4.1 Classical models

We experimented with five classifiers: Naı̈ve Bayes,

Logistic Regression (LR), Support Vector Machines

(SVM), Random Forest and Decision Trees using the sci-

kit-learn [21]. Support Vector Machine constructs a

hyperplane or set of hyperplanes in a high- or infinite-

dimensional space, which can be used for classification,

regression, or other tasks like outliers detection. We used a

LinearSVC which is similar to SVC, but implemented

using liblinear rather than libsvm, so it has more flexibility

in the choice of penalties and loss functions and should

scale better to large numbers of samples. Naive Bayes (NB)

methods are a set of supervised learning algorithms based

on applying Bayes’ theorem with the ‘‘naive’’ assumption

of conditional independence between every pair of features

given the value of the class variable. We used the Multi-

nomial Naive Bayes which implements the naive Bayes

algorithm for multinomial distributed data and is one of the

two classic naive Bayes variants used in text classification.

A Random Forest (RF) is a meta-estimator that fits a

number of decision tree classifiers on various subsamples

of the dataset and uses averaging to improve the predictive

accuracy and control over-fitting. The Decision Tree (DT)

Classifier uses a CART algorithm (Classification And

Regression Tree). CART is a nonparametric decision tree

learning technique that produces either classification or

regression trees, depending on whether the dependent

Table 1 Training sets and

description
Training size Description No. of training sets used

100 k 100,000 drug tweets ? 100,000 non drug tweets 10

200 k 200,000 drug tweets ? 200,000 non drug tweets 10

300 k 300,000 drug tweets ? 300,000 non-drug tweets 10

500 k 500,000 drug tweets ? 500,000 non-drug tweets 10

1 M 1,000,000 drug tweets ? 1,000,000 non-drug tweets 10

2 M 2,000,000 drug tweets ? 2,000,000 non-drug tweets 10

3 M 3,000,000 drug tweets ? 3,000,000 non-drug tweets 10

Neural Computing and Applications (2023) 35:18161–18169 18163

123



variable is categorical or numeric, respectively. However,

the scikit-learn library uses an optimized version of the

CART which does not support categorical values. For all

the models, scikit learn’s TF-IDF vectorizer was used to

convert raw tweet text to TF-IDF features and return the

document-term matrix which is sent to the model.

4.2 Deep learning models

We experimented with 5 different deep learning models

which include Transformers, CNN and LSTM models.

Bidirectional Encoder Representations from Transformers

(BERT) [3] has been the state-of-the-art language repre-

sentation model for solving a wide range of tasks, such as

question answering, language inference, sentence predic-

tion and text classification. We experimented with the

‘‘bert-large-uncased’’ model, which is of 24-layer,

1024-hidden, 16-heads, 340 M parameters and trained on

lower-cased English Wikipedia text and book corpus [22].

Bidirectional Encoder Representations from Transformers

for Biomedical Text Mining (BioBERT) [23] is a domain-

specific language representation model pre-trained on

large-scale biomedical corpora. The BioBERT model

architecture used for our experiment is 12-layer, 768 hid-

den size, 12-heads, 1 M parameters and trained on PubMed

baseline abstracts. The final architecture used in Trans-

formers is Robustly Optimized BERT Pretraining

Approach (RoBERTa) [24] which has an improved pre-

training procedure over BERT. We used the ‘‘roberta-

large’’ model which is of 24-layer, 1024-hidden, 16-heads,

355 M parameters RoBERTa using the BERT-large

architecture. For implementation, we utilized Simple

Transformers [25] which seamlessly worked with the

Natural Language Understanding (NLU) architectures

made available by Hugging Face’s Transformers models

[26].

Although the Convolutional Neural Networks (CNN)

were originally built for image processing, they proved to

achieve exceptional results when applied to text data as

[27–29]. We incorporated a basic CNN architecture with

convolutional layers, embedding layer, dropout layers,

maxpooling layers, dense layers and a flatten layer. We

used the Keras implementation of CNN model by Text

Classification Algorithms: A survey [30]. For the experi-

ment, we used Adam Optimizer, Relu Activation function

and RedMed [31] Embedding model. All the CNN exper-

iments were run on 10 epochs and 2048 batch size.

The final model used in our experiments was Bidirec-

tional LSTM [32] which belongs to a larger category of

Neural Networks called Recurrent Neural Networks

(RNN). In RNN, the neural net considers the information

of previous nodes in a very sophisticated method which

allows for better semantic analysis of the structures in the

dataset and therefore is a powerful technique for text

classification tasks. The LSTM architecture consists of

three different gates: Input, Output and Forget gate which

operate together to decide what information to remember

and what to forget in the LSTM cell over an arbitrary time.

We incorporated a basic LSTM architecture with an

Embedding layer, Bidirectional LSTM, dropout layer and

dense layer. We used the Keras implementation of CNN

model by Text Classification Algorithms: A survey [30].

We used the RedMed [31] Embedding model with the

following hyper-parameters for the experiment: Adam

Optimizer, bidirectional set to true, max sequence length

280, dropout 0.2 and softmax activation function were used

in our experiment. All the experiments were run on 10

epochs with batch size 1024.

In order to select the best word embedding model, we

experimented with 6 different word embeddings listed in

Table 2 and adopted the best embedding model based on

ROC curves from Fig. 1. The best results were obtained

when the RedMed embedding model was used. The

RedMed model is trained on a corpus of more than 500

million comments over 2500 subreddits. The model has an

embedding size of 64 dimensions, a window size of 7 and a

minimum count of 5.

5 Experimental results

In order to evaluate the results, we used the following

metrics: precision (P), recall (R), F-measure (F) and

accuracy (A). Table 3 presents the results of the SVM

model on all training sets for the 100 k training size.

Training set number 9 has the best F-measure score when

compared with all the other training sets. For example, for

the 100 k training size, in classical models, a total of 50

experiments were performed (5 models * 10 training sets *

1 training size). Out of 50 experiments, SVM model

training set number 9 obtained the best results. The

experiment with the best F measure is used as the metric

while plotting Fig. 4. A total of 700 experiments (10

models * 10 different training sets * 7 different training

sizes) were implemented as part of our experiment.

Table 4 presents the best F-measure scores in each

training size in all the classical models. Figures 2, 3 and 4

depict the precision, recall and F-measure for the classical

models. In classical models, we could obtain a maximum

F-Measure of 0.9092 for the 300,000 drug samples dataset.

Although the SVM model performed the best amongst

all the models in all training sizes, the important observa-

tion to note here is that the Logistic Regression and Naive

Bayes models came close to SVM in performance.

For the deep learning models, CNN and LSTM, we

obtained the probability scores for the test set and compiled
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Table 2 Details of Embeddings

# Embedding name and source Details

em1 Drug Chatter Twitter [16] 1B drug tweets from user timelines; window size 5 and dimension 400

em2 Glove [33] 840B tokens, 2.2 M vocab, cased, 300d vectors

em3 Twitter Word2vec

Embeddings [34]

400 million Twitter tweets; Negative sampling; Skip-gram architecture; Window of 1; subsampling rate of

0.001; Vector size of 400

em4 glove.twitter.27B [33] 2B tweets, 27B tokens, 1.2 M vocab, uncased,200d vectors

em5 RedMed Model [31] 3 M tokens, 64d; Reddit drug posts

em6 Glove [33] 42B tokens, 1.9 M vocab, uncased, 300d vectors

Fig. 1 ROC curves for all embedding models

Table 3 SVM model results for all training sets for the training size

100 k

Training set # P R F A

1 0.9943 0.8012 0.8874 0.8983

2 0.9946 0.8004 0.887 0.8981

3 0.9946 0.8028 0.8884 0.8992

4 0.9939 0.7990 0.8859 0.8971

5 0.9938 0.7869 0.8784 0.8910

6 0.9938 0.8028 0.8881 0.8989

7 0.9941 0.7955 0.8838 0.8954

8 0.9939 0.8037 0.8888 0.8994

9 0.9933 0.8069 0.8905 0.9008

10 0.9941 0.8018 0.8876 0.8985

Table 4 F-measure of best classical models

Training Size LR SVM NB RF DT

100 k 0.8429 0.8905 0.8462 0.771 0.7512

200 k 0.8597 0.8968 0.8626 0.7821 0.7194

300 k 0.8708 0.9092 0.8749 0.8028 0.7582

500 k 0.8784 0.9023 0.8861 0.8116 0.7465

1 M 0.8907 0.9058 0.8906 0.8231 0.775

2 M 0.8948 0.9048 0.8961 0.8409 0.7592

3 M 0.8984 0.9049 0.8989 0.8464 0.7262

Fig. 2 Precision for all best classical models

Fig. 3 Recall for all best classical models
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the ROC curves and determined the best training set in a

training size. Further, the best model ROC curve was used

to determine the cutoff threshold. For each training size, we

set a cutoff threshold using ROC curves. Figure 5a depicts

the ROC curves of the LSTM model for the training size

100 k, and Fig. 5b depicts the enlarged version of the 5a to

which offers better insight to 5a.

Based on the ROC curves, training set 7 was determined

to be the best model in the 100 k training size. For the

training size 100 k, based on ROC curves (Fig. 5), the

cutoff threshold was determined to be 0.65. All the tweets

with probability scores greater than 0.65 were classified as

drug tweets, and the other tweets are classified as non-drug

tweets. Table 5 presents the best F-measure scores of deep

learning models for all the best training sets in all the

training sizes. Figures 6, 7 and 8 depict the precision, recall

and F-measure for the deep learning models. In deep

learning models, we could obtain a maximum of 0.9951

F-measure score for 100,000 drug samples.

The CNN and LSTM models when used with RedMed

embeddings performed better when compared with other

embedding models (e.g., Glove models which are trained

on 840B tokens and 2.2 Million vocab). However, sur-

prisingly the transformer models (BERT) outperformed the

results of CNN and LSTM and BioBERT (biomedical

representation model). This might be due to Twitter being a

non-medical social media platform where English vocab-

ulary is predominant than medical vocabulary. The primary

objective of this research is to demonstrate our approach of

using noisy labels instead of a gold standard annotated

datasets in the context of social media data mining, but not

to identify the best machine learning model which works

for weak supervision. The results from Tables 4 and 5

validate our hypothesis.

5.1 Experiments with gold standard dataset

In order to validate our results with the gold standard

dataset, we performed experiments only with the gold

standard dataset. We used a 75–25 split of gold standard

dataset as train and test data and trained both classical and

deep learning models. The results obtained from the

experiments are presented in Tables 6 and 7.

The SVM model obtained an F-measure of 0.9892 and

outperformed all the other models in classical models.

Unsurprisingly, the BERT model’s performance was

Fig. 4 F-measure for all best classical models

Fig. 5 a ROC curves for all the 10 training sets for the 100 k training

size. b Enlarged version of (a)

Table 5 F-measure of best Deep Learning Models

# Size BERT Bio BERT RoBERTa CNN LSTM

100 k 0.9951 0.9296 0.9339 0.8675 0.9869

200 k 0.9282 0.9287 0.9333 0.8566 0.9625

300 k 0.9324 0.9299 0.9371 0.8558 0.9442

500 k 0.9270 0.9264 0.9655 0.8549 0.9389

1 M 0.9705 0.9257 0.9891 0.8392 0.9312

2 M 0.9231 0.9152 0.9729 0.8118 0.9152

3 M 0.9719 0.9125 0.9517 0.8200 0.9180
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superior when compared to classical models and all deep

learning models.

5.2 Calculating theoretical bounds

Based on the theory of noisy learning, we calculated the

minimum number of noisy samples using the accuracy of

the best and worst performing models. The following

table presents the number of noisy observations required

when there are 10,822 samples (75% of the gold standard

data) available. The minimum number of noisy observa-

tions required when c = 0.05 and d = 0.05 are presented in

Table 8.

According to Table 8, for a generalization error of 0.05,

we would require 42,021 minimum noisy samples instead

of 10,822 gold standard samples. Theoretically, we require

a minimum 42,021 noisy samples.

Table 9 presents the comparison of results between the

best performing models when trained on gold and silver

standard data. When trained on gold standard data, BERT

model obtained the best F-measure score (0.9978) when

trained on 10,822 samples (75% of the gold standard data).

However, the BERT model obtained 0.9951 F-measure

score when trained on 100,000 samples of silver standard

data. The important observation here is that it is relatively

easier to obtain 100,000 samples of silver standard data

than to obtain 10,000 samples of gold standard data.

Fig. 6 Precision of all best deep learning models

Fig. 7 Recall of all best deep learning models

Fig. 8 F-measure of all best deep learning models

Table 6 Results of classical models when trained on gold standard

dataset

Classifier P R F A

LR 0.9635 0.9494 0.9564 0.9573

SVM 0.9943 0.9842 0.9892 0.9894

NB 0.7191 0.9898 0.8330 0.8043

RF 0.8032 0.7685 0.7855 0.7929

DT 0.9447 0.9601 0.9523 0.9526

Table 7 Results of deep learning models when trained on gold

standard dataset

Classifier P R F A

CNN 0.9146 0.8737 0.8937 0.8968

RNN 0.9855 0.9882 0.9868 0.9869

BERT 0.9978 0.9978 0.9978 0.9977

BioBERT 0.9850 0.9973 0.9911 0.9908

RoBERTa 0.9967 0.9978 0.9973 0.9972

Table 8 Number of minimum noisy samples required

Accuracy Minimum number of noisy samples Model

0.9978 14,558 BERT

0.7930 42,021 DT
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In this work, our primary contribution is to demonstrate

the feasibility of using weak supervision to identify drug

mentions from noisy Twitter data. We utilized silver

standard dataset instead of gold standard dataset to train the

machine learning models as curating gold standard dataset

is tedious and laborious. The primary motivation behind

this work is to demonstrate the results of models when

trained on noisy data on several training sizes. Though the

results demonstrated that with the increase in training size

there is an increase in the performance of the model, we

wanted to emphasize with proof that noisy data can be

utilized for training sizes as small as 100,000 samples and

as large as 3,000,000 samples. While seemingly a

straightforward task, we would like to emphasize that this

is the first application to utilize weak supervision in the

field of pharmacovigilance.

6 Future work

There are several directions in which this work can pro-

gress. Firstly, the training set used in our experiments was

compiled by utilizing a heuristic dictionary based

approach. This approach does not acquire tweets with

misspellings which contain potentially important data. On

twitter COVID-19 drug mentions research [15], consider-

ing misspellings yielded 20 percent additional data. Thus,

in future work, we would employ misspelling modules to

obtain more training data. Secondly, we artificially created

a balanced training dataset, but in reality, drug tweets

comprise less than 1% of all the tweets generated. We

would like to perform several experiments with trade-off

between classes and balance. Finally, instead of utilizing a

lexicon, we would like to employ labelling functions to

annotate a tweet.

7 Conclusion

Supervised learning techniques are successful when large

annotated datasets are available. However, labeling data

has become a bottleneck due to cost associated with it. In

this work, we demonstrate the feasibility of utilizing weak

supervision to obtain results similar to supervised learning.

This approach can help reduce the need for manual anno-

tation which saves time and resources. Further, the models

from Weak Supervision are scalable and can be utilized

with large data. Additionally, the approach can easily be

extended to several other applications by generating

heuristics and curating silver standard datasets.
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