Skip to main content

Advertisement

Log in

MEDAS: an open-source platform as a service to help break the walls between medicine and informatics

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the past decade, deep learning (DL) has achieved unprecedented success in numerous fields, such as computer vision and healthcare. Particularly, DL is experiencing an increasing development in advanced medical image analysis applications in terms of segmentation, classification, detection, and other tasks. On the one hand, tremendous needs that leverage DL’s power for medical image analysis arise from the research community of a medical, clinical, and informatics background to share their knowledge, skills, and experience jointly. On the other hand, barriers between disciplines are on the road for them, often hampering a full and efficient collaboration. To this end, we propose our novel open-source platform, i.e., MEDAS–the MEDical open-source platform As Service. To the best of our knowledge, MEDAS is the first open-source platform providing collaborative and interactive services for researchers from a medical background using DL-related toolkits easily and for scientists or engineers from informatics modeling faster. Based on tools and utilities from the idea of RINV (Rapid Implementation aNd Verification), our proposed platform implements tools in pre-processing, post-processing, augmentation, visualization, and other phases needed in medical image analysis. Five tasks, concerning lung, liver, brain, chest, and pathology, are validated and demonstrated to be efficiently realizable by using MEDAS. MEDAS is available at http://medas.bnc.org.cn/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. IaaS is the abbreviation of “Infrastructure as a Service”; PaaS is the abbreviation of “Platform as a Service”; SaaS is the abbreviation of “Software as a Service”; and CaaS is the abbreviation of “Container as a Service”.

  2. The container includes 6 cores of Intel® Xeon® Gold 5120 CPU, an NVIDIA Tesla V100(32G PCIe version), and 48 Gigabytes of memory.

References

  1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX symposium on operating systems design and implementation, OSDI 2016, vol abs/1605.0, pp 265–283 (2016). http://arxiv.org/abs/1605.08695

  2. Andrew AM (1999) The handbook of brain theory and neural. Networks. https://doi.org/10.1108/k.1999.28.9.1084.1. https://dl.acm.org/citation.cfm?id=303568.303704

  3. Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Van Beek EJ, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DP, Roberts RY, Smith AR, Starkey A, Batra P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Vande Casteele A, Gupte S, Sallam M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY, Clarke LP (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931. https://doi.org/10.1118/1.3528204

    Article  Google Scholar 

  4. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3):2033–2044.https://doi.org/10.1016/j.neuroimage.2010.09.025. https://www.sciencedirect.com/science/article/pii/S1053811910012061

  5. Beaulah Jeyavathana R, Balasubramanian R, Pandian AA (2016) A survey: analysis on pre-processing and segmentation techniques for medical images. Int J Res Sci Innov III(June):2321–2705

    Google Scholar 

  6. Beers A, Brown J, Chang K, Hoebel K, Patel J, Ly KI, Tolaney SM, Brastianos P, Rosen B, Gerstner ER, Kalpathy-Cramer J (2021) DeepNeuro: an open-source deep learning toolbox for neuroimaging. Neuroinformatics 19(1):127–140.https://doi.org/10.1007/s12021-020-09477-5. https://arxiv.org/abs/1808.04589

  7. Bilic1a P, Christa PF, Vorontsov E, Chlebusr G, Chenm H, Doum Q, Fum CW, Hanp X, Hengm PA, Hesserq J, Kadourye S, Kopczyskiv T, Leo M, Lio C, Lim X, Lipkova J, Lowengrubn J, Meiner H, Moltzr JH, Pale C, Pirauda M, Qim X, Qil J, Rempera M, Rothq K, Schenkr A, Sekuboyinaa A, Zhouk P, Hulsemeyera C, Beetza M, Ettlingera F, Gruena F, Kaissisb G, Lohferb F, Brarenb R, Holchc J, Hofmannc F, Sommerc W, Heinemannc V, Jacobsd C, Mamanid GEH, Ginnekend BV, Chartrande G, Tange A, Drozdzale M, Kadourye S, Ben-Cohenf A, Klangf E, Amitaif MM, Konenf E, Greenspanf H, Moreaug J, Hostettlerg A, Solerg L, Vivantih R, Szeskinh A, Lev-Cohainh N, Sosnah J, Joskowiczh L, Kumarw A, Korex A, Wangy C, Fengz D, Liaa F, Krishnamurthix G, Heab J, Wuaa J, Kimx J, Zhouac J, Maad J, Liaa J, Maninisae KK, Kaluvax KC, Bix L, Khenedx M, Beliverae M, Linaa Q, Yangad X, Yuanaf Y, Chenaa Y, Liad Y, Qius Y, Wuad Y, Menzea B (2019) The liver tumor segmentation benchmark (LiTS). http://arxiv.org/abs/1901.04056

  8. Brendan McMahan H, Moore E, Ramage D, Hampson S, Agüera y Arcas B (2017) Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th international conference on artificial intelligence and statistics, AISTATS 2017. http://arxiv.org/abs/1602.05629

  9. Cai H, Chen T, Zhang W, Yu Y, Wang J (2018) Efficient architecture search by network transformation. In: 32nd AAAI conference on artificial intelligence, AAAI 2018, pp 2787–2794

  10. Chang CY, Chung PC, Hong YC, Tseng CH (2011) A neural network for thyroid segmentation and volume estimation in CT images. IEEE Computat Intell Mag 6(4):43–55. https://doi.org/10.1109/MCI.2011.942756.. https://ieeexplore.ieee.org/document/6052365

  11. Chen S, Bruijne MD (2018) An end-to-end approach to semantic segmentation with 3D CNN and posterior-CRF in medical images. http://arxiv.org/abs/1811.03549

  12. Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J (2017) Dual path networks. In: Adv Neural Inf Process Syst 2017:4468–4476

  13. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E (2014) cuDNN: efficient primitives for deep learning. arXiv: Neural and evolutionary computing. http://arxiv.org/abs/1410.0759

  14. Choi Y, El-Khamy M, Lee J (2017) Towards the limit of network quantization. In: 5th International conference on learning representations, ICLR 2017—conference track proceedings. http://arxiv.org/abs/1612.01543

  15. Crankshaw D, Sela GE, Mo S, Zumar C, Gonzalez JE, Stoica I, Tumanov A (2018) InferLine: ML prediction pipeline provisioning and management for tight latency objectives. http://arxiv.org/abs/1812.01776

  16. Czarnecki WM, Osindero S, Jaderberg M, Swirszcz G, Pascanu R (2017) Sobolev training for neural networks. Adv Neural Inf Process Syst 2017:4279–4288

  17. Deng J, Dong W, Socher R, Li LJ (2010) Kai Li, Li Fei-Fei: ImageNet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255. IEEE. https://doi.org/10.1109/cvpr.2009.5206848.https://ieeexplore.ieee.org/document/5206848/

  18. Denton E, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within convolutional networks for efficient evaluation. Adv Neural Inf Process Syst 2(January):1269–1277

    Google Scholar 

  19. Dettmers T (2016) 8-Bit approximations for parallelism in deep learning. In: 4th International conference on learning representations, ICLR 2016—conference track proceedings

  20. Dolz J, Gopinath K, Yuan J, Lombaert H, Desrosiers C, Ben Ayed I (2019) HyperDense-net: a hyper-densely connected cnn for multi-modal image segmentation. IEEE Trans Med Imag 38(5):1116–1126. https://doi.org/10.1109/TMI.2018.2878669.. https://arxiv.org/abs/1804.02967

  21. Dou Q, Chen H, Jin Y, Yu L, Qin J, Heng PA (2016) 3D deeply supervised network for automatic liver segmentation from CT volumes. In: S. Ourselin, L. Joskowicz, M.R. Sabuncu, G. Unal, W. Wells (eds.) Lecture notes in computer science (including subseries lecture notes in Artificial intelligence and lecture notes in bioinformatics), vol 9901 LNCS, pp 149–157. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-46723-8_18

  22. Fischl B (2012). FreeSurfer. https://doi.org/10.1016/j.neuroimage. 21 Jan 2012. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476/

  23. Gao Y, Yang H, Zhang P, Zhou C, Hu Y (2019) GraphNAS: graph neural architecture search with reinforcement learning. In: arXiv, vol. abs/1611.0

  24. Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, Eaton-Rosen Z, Gray R, Doel T, Hu Y, Whyntie T, Nachev P, Modat M, Barratt DC, Ourselin S, Cardoso MJ, Vercauteren T (2018) NiftyNet: a deep-learning platform for medical imaging. Comput Methods Programs Biomed 158:113–122. https://doi.org/10.1016/j.cmpb.2018.01.025.. https://www.sciencedirect.com/science/article/pii/S0169260717311823

  25. Goodfellow IJ, Erhan D, Luc Carrier P, Courville A, Mirza M, Hamner B, Cukierski W, Tang Y, Thaler D, Lee DH, Zhou Y, Ramaiah C, Feng F, Li R, Wang X, Athanasakis D, Shawe-Taylor J, Milakov M, Park J, Ionescu R, Popescu M, Grozea C, Bergstra J, Xie J, Romaszko L, Xu B, Chuang Z, Bengio Y (2015) Challenges in representation learning: a report on three machine learning contests. Neural Netw 64:59–63

  26. Graham, S., Vu, Q.D., Ahmed Raza, S.E., Azam, A., Tsang, Y.W., Kwak, J.T., Rajpoot, N.: HoVer-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images, 1–11 (2018). http://arxiv.org/abs/1812.06499

  27. He K, Gkioxari G, Dollár P, Girshick R (2020) Mask R-CNN. IEEE Tran Pattern Anal Mach Intell 42(2):386–397. https://doi.org/10.1109/TPAMI.2018.2844175

    Article  Google Scholar 

  28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition 2016:770–77. https://doi.org/10.1109/CVPR.2016.90http://arxiv.org/abs/1512.03385

  29. Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M (2020) FastSurfer—a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 219. Di: 10.1016/j.neuroimage.2020.117012. http://arxiv.org/abs/1910.03866

  30. Hohman F, Kahng M, Pienta R, Chau DH (2019) Visual analytics in deep learning: an interrogative survey for the next frontiers. IEEE Trans Vis Comput Graph 25(8):2674–2693

  31. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017, vol 2017, pp 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243.http://arxiv.org/abs/1608.06993

  32. Hykes S (2013) Empowering app development for developers | Docker. https://www.docker.com/

  33. McCormick M, Liu X, Jomier J, Marion C, Ibanez L (2014) ITK: enabling reproducible research and open science. Front Neuroinform 8:13. https://doi.org/10.3389/fninf.2014.00013

    Article  Google Scholar 

  34. Jamaludin A, Kadir T, Zisserman A (2017) SpineNet: Automated classification and evidence visualization in spinal MRIs. Med Image Anal 41:63–73

  35. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL—review. NeuroImage 62(2):782–90

  36. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. In: MM 2014—Proceedings of the 2014 ACM conference on multimedia, pp 675–678. https://doi.org/10.1145/2647868.2654889

  37. Jimenez-Carretero D, Bermejo-Peláez D, Nardelli P, Fraga P, Fraile E, San José Estépar R, Ledesma-Carbayo MJ (2019) A graph-cut approach for pulmonary artery-vein segmentation in noncontrast CT images. Med Image Anal 52:144–159. https://doi.org/10.1016/j.media.2018.11.011. http://www.sciencedirect.com/science/article/pii/S1361841518308740

  38. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

  39. Khagi B, Lee CG, Kwon GR (2019) Alzheimer’s disease classification from brain MRI based on transfer learning from CNN. In: BMEiCON 2018—11th biomedical engineering international conference. https://doi.org/10.1109/BMEiCON.2018.8609974

  40. Khvostikov A, Aderghal K, Benois-Pineau J, Krylov A, Catheline G (2018) 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies. http://arxiv.org/abs/1801.05968

  41. Khvostikov A, Benois-Pineau J, Krylov A, Catheline G (2017) Classification methods on different brain imaging modalities for Alzheimer disease studies. In: GraphiCon 2017—27th international conference on computer graphics and vision, pp 237–242

  42. Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D ( 2016) Federated learning: strategies for improving communication efficiency. http://arxiv.org/abs/1610.05492

  43. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. In: Commun ACM 60:84–90. https://doi.org/10.1145/3065386

  44. Kumar N, Verma R, Sharma S, Bhargava S, Vahadane A, Sethi A (2017) A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans Med Imag 36(7):1550–1560. https://doi.org/10.1109/TMI.2017.2677499

    Article  Google Scholar 

  45. Lebedev V, Lempitsky V (2016) Fast convnets using group-wise brain damage. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition 2016:2554–2564. https://doi.org/10.1109/CVPR.2016.280

  46. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2323. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  47. Lee LK, Liew SC (2015) A survey of medical image processing tools. In: 2015 4th international conference on software engineering and computer systems, ICSECS 2015: virtuous software solutions for big data, pp 171–176. https://doi.org/10.1109/ICSECS.2015.7333105

  48. Li Z, Hoiem D (2018) Learning without forgetting. IEEE Trans Pattern Anal Mach Intell 40(12):2935–2947. https://doi.org/10.1109/TPAMI.2017.2773081

    Article  Google Scholar 

  49. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI (2017). A survey on deep learning in medical image analysis

  50. Litjens, G., Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergen-Van De Kaa C, Bult P, Van Ginneken B, Van Der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6(1):26286. https://doi.org/10.1038/srep26286.http://www.nature.com/articles/srep26286

  51. Liu T, Guo Q, Lian C, Ren X, Liang S, Yu J, Niu L, Sun W, Shen D (2019) Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med Image Anal 58:101555

  52. Lowekamp BC, Chen DT, Ibáñez L, Blezek D (2013) The design of simpleITK. Front Neuroinf 7(DEC):45. https://doi.org/10.3389/fninf.2013.00045

  53. Lu F, Wu F, Hu P, Peng Z, Kong D (2017) Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg 12(2):171–182

  54. Magee D, Treanor D, Crellin D, Shires M, Smith K, Mohee K, Quirke P (2009) Colour normalisation in digital histopathology images. Opt Tissue Image Anal Microsc Histopathol Endosc MICCAI Workshop, pp 100–111. https://www.researchgate.net/publication/228855426_Colour_Normalisation_in_Digital_Histopathology_Imageshttps://www.researchgate.net/publication/339593324_Colour_Normalisation_in_Digital_Histopathology_Images

  55. Maloney J, Resnick M, Rusk N, Silverman B, Eastmond E (2010) The scratch programming language and environment. ACM Trans Comput Educ 10(4):16. https://doi.org/10.1145/1868358.1868363

    Article  Google Scholar 

  56. Marcos Romero BS (2019) Blueprints visual scripting for unreal engine. https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html

  57. Marlow S (2010) Haskell 2010 language report. Language, p 329. http://haskell.org/definition/haskell2010.pdf

  58. Milletari F, Navab N, Ahmadi SA (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings—2016 4th international conference on 3D vision, 3DV 2016, pp 565–571. https://doi.org/10.1109/3DV.2016.79

  59. Minati, L., Edginton, T., Grazia Bruzzone, M., Giaccone, G.: Reviews: current concepts in alzheimer’s disease: a multidisciplinary review (2009). https://doi.org/10.1177/1533317508328602

  60. Moradi M, Madani A, Karargyris A, Syeda-Mahmood TF (2018) Chest x-ray generation and data augmentation for cardiovascular abnormality classification. In: E.D. Angelini, B.A. Landman (eds.) Medical imaging 2018: image processing 10574:57. SPIE. https://doi.org/10.1117/12.2293971.https://doi.org/10.1117/12.2293971

  61. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) The Alzheimer’s disease neuroimaging initiative. Neuroimag Clin North Am 15(4):869–877. https://doi.org/10.1016/j.nic.2005.09.008

    Article  Google Scholar 

  62. Müller, D., Kramer, F.: MIScnn: A framework for medical image segmentation with convolutional neural networks and deep learning (2019)

  63. Naylor P, Laé M, Reyal F, Walter T (2019) Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans Med Imag 38(2):448–459. https://doi.org/10.1109/TMI.2018.2865709

    Article  Google Scholar 

  64. Ogiela MR, Tadeusiewicz R (2008) Preprocessing medical images and their overall enhancement. Stud Comput Intell 84:65–97. https://doi.org/10.1007/978-3-540-75402-2_4

    Article  Google Scholar 

  65. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in \(\backslash\)uppercasePy\(\backslash\)uppercaseTorch. In: NIPS 2017 Autodiff Workshop: the future of gradient-based machine learning software and techniques, pp 8024–8035 (2017). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  66. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: An imperative style, high-performance deep learning library. http://arxiv.org/abs/1912.01703

  67. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imag 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

    Article  Google Scholar 

  68. Pham H, Guan MY, Zoph B, Le QV, Dean J (2018) Efficient neural architecture search via parameter sharing. In: 35th International conference on machine learning, ICML 2018, vol  9, pp 6522–6531

  69. Qaiser T, Tsang YW, Taniyama D, Sakamoto N, Nakane K, Epstein D, Rajpoot N (2019) Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features. Med Image Anal 55:1–14

  70. Radul T (2001) Functional representations of Lawson monads. Appl Categor Struct 9(5):457–463. https://doi.org/10.1023/A:1012052928198

    Article  MathSciNet  MATH  Google Scholar 

  71. Rajan, D., Beymer, D., Abedin, S., Dehghan, E.: Pi-PE: A pipeline for pulmonary embolism detection using sparsely annotated 3D CT images (2019). http://arxiv.org/abs/1910.02175

  72. Rajchl, M., Pawlowski, N., Rueckert, D., Matthews, P.M., Glocker, B.: NeuroNet: Fast and robust reproduction of multiple brain image segmentation pipelines (2018). http://arxiv.org/abs/1806.04224

  73. Rameshkumar S, Thilak JAJ, Suresh P, Sathishkumar S, Subramani N (2016) Speckle noise removal in MRI scan image using WB—filter. Int J Innov Res Sci Eng Technol 5(12):21079–21083. https://doi.org/10.15680/IJIRSET.2016.0512161

  74. Reinhard E, Ashikhmin M, Gooch B, Shirley P (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41. https://doi.org/10.1109/38.946629

    Article  Google Scholar 

  75. Rezaei M, Shahidi M (2020) Zero-shot learning and its applications from autonomous vehicles to covid-19 diagnosis: a review. https://doi.org/10.1016/j.ibmed.2020.100005.. http://arxiv.org/abs/2004.14143

  76. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Lecture notes in computer science (including subseries Lecture Notes in Artificial intelligence and lecture notes in bioinformatics), vol 9351, pp 234–241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  77. Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(4):291–299

    Google Scholar 

  78. Ryan Olson, Jonathan Calmels, F.A., |, P.R.: NVIDIA Docker: GPU server application deployment made easy (2016). https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-made-easy/

  79. Satyanarayanan M, Goode A, Gilbert B, Harkes J, Jukic D (2013) OpenSlide: a vendor-neutral software foundation for digital pathology. J Pathol Inf 4(1):27. https://doi.org/10.4103/2153-3539.119005

    Article  Google Scholar 

  80. Senthilraja S, Suresh P, Suganthi M (2014) Noise reduction in computed tomography image using WB-filter. Int J Sci Eng Res 5(3):243

    Google Scholar 

  81. Setio AAA, Traverso A, de Bel T, Berens MS, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B, van der Gugten R, Heng PA, Jansen B, de Kaste MM, Kotov V, Lin JYH, Manders JT, Sóñora-Mengana A, García-Naranjo JC, Papavasileiou E, Prokop M, Saletta M, Schaefer-Prokop CM, Scholten ET, Scholten L, Snoeren MM, Torres EL, Vandemeulebroucke J, Walasek N, Zuidhof GC, van Ginneken B, Jacobs C (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med Image Anal 42:1–13. https://doi.org/10.1016/j.media.2017.06.015.http://arxiv.org/abs/1612.08012

  82. Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S (2019) Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Lecture notes in Computer science (including subseries Lecture notes in Artificial intelligence and lecture notes in bioinformatics), vol 11383 LNCS, pp 92–104. https://doi.org/10.1007/978-3-030-11723-8_9

  83. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60. https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  84. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd International conference on learning representations, ICLR 2015—conference track proceedings

  85. Skibbe H, Watakabe A, Nakae K, Gutierrez CE, Tsukada H, Hata J, Kawase T, Gong R, Woodward A, Doya K, Okano H, Yamamori T, Ishii S (2019) MarmoNet: a pipeline for automated projection mapping of the common marmoset brain from whole-brain serial two-photon tomography. http://arxiv.org/abs/1908.00876

  86. Song J, Xiao L, Molaei M, Lian Z (2019) Multi-layer boosting sparse convolutional model for generalized nuclear segmentation from histopathology images. Knowl Based Syst 176:40–53

  87. Swiderska-Chadaj Z, Pinckaers H, van Rijthoven M, Balkenhol M, Melnikova M, Geessink O, Manson Q, Sherman M, Polonia A, Parry J, Abubakar M, Litjens G, van der Laak J, Ciompi F (2019) Learning to detect lymphocytes in immunohistochemistry with deep learning. Med Image Anal 58. https://doi.org/10.1016/j.media.2019.101547

  88. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: 31st AAAI conference on artificial intelligence, AAAI 2017, pp 4278–4284 (2017)

  89. Tai, C., Xiao, T., Zhang, Y., Wang, X., Weinan, E.: Convolutional neural networks with low-rank regularization. In: 4th International conference on learning representations, ICLR 2016—conference track proceedings (2016)

  90. The Linux foundation: production-grade container orchestration—Kubernetes (2020). https://kubernetes.io/

  91. Thenua R, Agarwal S (2010) Simulation and performance analysis of adaptive filter in noise cancellation. Int J Eng Sci Technol 2(9):4373–4378

    Google Scholar 

  92. Tofighi M, Guo T, Vanamala JK, Monga V (2019) Prior information guided regularized deep learning for cell nucleus detection. IEEE Trans Med Imag 38(9):2047–2058. https://doi.org/10.1109/TMI.2019.2895318

    Article  Google Scholar 

  93. Trullo, R., Petitjean, C., Ruan, S., Dubray, B., Nie, D., Shen, D.: Segmentation of organs at risk in thoracic CT images using a sharpmask architecture and conditional random fields. In: Proceedings—international symposium on biomedical imaging, vol 2017, pp 1003–1006 (2017). https://doi.org/10.1109/ISBI.2017.7950685

  94. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imag 29(6):1310–1320. https://doi.org/10.1109/TMI.2010.2046908

    Article  Google Scholar 

  95. Vahadane A, Peng T, Sethi A, Albarqouni S, Wang L, Baust M, Steiger K, Schlitter AM, Esposito I, Navab N (2016) Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans Med Imag 35(8):1962–1971. https://doi.org/10.1109/TMI.2016.2529665

    Article  Google Scholar 

  96. Vanhoucke V, Senior A, Mao M (2011) Improving the speed of neural networks on CPUs. Proc Deep Learn, pp 1–8. http://research.google.com/pubs/archive/37631.pdf

  97. Wang Z, Lin Y, Cheng KTT, Yang X (2020) Semi-supervised mp-MRI data synthesis with StitchLayer and auxiliary distance maximization. Med Image Anal 59:101565

  98. Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, vol 07–12-June, pp 1912–1920. https://doi.org/10.1109/CVPR.2015.7298801.http://arxiv.org/abs/1406.5670

  99. Yao GL (2017) A survey on pre-processing in image matting. J Comput Sci Technol 32(1):122–138. https://doi.org/10.1007/s11390-017-1709-z

    Article  MathSciNet  Google Scholar 

  100. Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: a review. Med Image Anal 58:101552

  101. Yong CY, Chew KM, Mahmood NH, Ariffin I (2012) A survey of visualization tools in medical imaging. Proc Soc Behav Sci 56:265–271

  102. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA Beussink-Nelson L, Lassen MH, Fan E, Aras MA, Jordan CR, Fleischmann KE, Melisko M, Qasim A, Efros A, Shah SJ, Bajcsy R, Deo RC (2017) A computer vision pipeline for automated determination of cardiac structure and function and detection of disease by two-dimensional echocardiography. http://arxiv.org/abs/1706.07342

  103. Zhang, K., Snavely, N., Sun, J.: Leveraging vision reconstruction pipelines for satellite imagery (2019). http://arxiv.org/abs/1910.02989

  104. shi Zhang, Q., chun Zhu, S.: Visual interpretability for deep learning: a survey (2018). https://doi.org/10.1631/FITEE.1700808

  105. Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. In: M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D.L. Collins, S. Duchesne (eds.) Lecture notes in Computer science (including subseries Lecture notes in Artificial intelligence and lecture notes in Bioinformatics), vol 10433 LNCS, pp693–701. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-66182-7_79

  106. Zhu, W., Liu, C., Fan, W., Xie, X.: DeepLung: Deep 3D dual path nets for automated pulmonary nodule detection and classification. In: Proceedings—2018 IEEE winter conference on applications of computer vision, WACV 2018, 2018:673–681 (2018). https://doi.org/10.1109/WACV.2018.00079

Download references

Acknowledgments

The authors would like to acknowledge all of the contributors to MEDAS: An open-source platform as a service to help break the walls between medicine and informatics. This work was supported by.—Shanghai Science and Technology Committee (No. 18411952100, No. 17411953500)

— National Natural Science Foundation of China (No. 62072358)

— National Key R&D Program of China under Grant (No. 2020YFF0304900, No. 2019YFB1311600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, J., Li, P. et al. MEDAS: an open-source platform as a service to help break the walls between medicine and informatics. Neural Comput & Applic 34, 6547–6567 (2022). https://doi.org/10.1007/s00521-021-06750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06750-9

Keywords