Skip to main content
Log in

Multi-objective flower pollination algorithm: a new technique for EEG signal denoising

  • S.I.: TAM-LHR
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The electroencephalogram (EEG) signal denoising problem has been considered a challenging task because of several artifact noises, such as eye blinking, eye movement, muscle activity, and power line interference, which can corrupt the original EEG signal during the recording time. Therefore, to remove these noises, the EEG signals must be processed to obtain efficient EEG features. Accordingly, several techniques have been proposed to reduce EEG noises, such as EEG signal denoising using wavelet transform (WT). The success of WT depends on the best configuration of its control parameters, which are often experimentally set. In this study, a multi-objective flower pollination algorithm (MOFPA) with WT (MOFPA-WT) is proposed to solve the EEG signal denoising problem. The novelty of this study is to find optimal EEG signal denoising parameters using MOFPA based on two measurement criteria for the denoised signals, namely minimum mean squared error (MSE) and maximum signal-to-noise ratio (SNR). The MOFPA-WT is tested using a standard EEG signal processing dataset, namely the EEG motor movement/imagery dataset. The performance of MOFPA-WT is evaluated using five criteria, namely SNR, SNR improvement, MSE, root mean squared error (RMSE), and percentage root mean square difference (PRD). Experiments are conducted using FPA with MSE, SNR, and MSE and SNR to show the effect of the multi-objective aspects on the performance of the proposed MOFPA-WT. Results show that FPA with MSE and SNR exhibits more subjective results than FPA with MSE and FPA with SNR. The convergence rate and Pareto front are also studied for the proposed MOFPA-WT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://www.physionet.org/physiobank/database/eegmmidb/.

  2. https://www.physionet.org/physiobank/database/eegmmidb/.

References

  1. Alyasseri ZAA, Khader AT, Al-Betar MA (2017) Optimal electroencephalogram signals denoising using hybrid \(\beta \)-hill climbing algorithm and wavelet transform. In: Proceedings of the international conference on imaging, signal processing and communication, pp 106–112

  2. Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, Springer, pp 240–249

  3. Alyasseri ZAA, Khader AT, Al-Betar MA, Awadallah MA, Yang XS (2018) Variants of the flower pollination algorithm: a review. In: Nature-inspired algorithms and applied optimization, Springer, pp 91–118

  4. Al-Betar MA, Awadallah MA, Doush IA, Hammouri AI, Mafarja M, Alyasseri ZAA (2019) Island flower pollination algorithm for global optimization. J Supercomput 75(8):5280–5323

    Article  Google Scholar 

  5. Yang X-S, Karamanoglu M, He X (2013) Multi-objective flower algorithm for optimization. Proc Comput Sci 18:861–868

    Article  Google Scholar 

  6. Yang X-S, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Opt 46(9):1222–1237

    Article  MathSciNet  Google Scholar 

  7. Tamilselvan V, Jayabarathi T (2016) Multi objective flower pollination algorithm for solving capacitor placement in radial distribution system using data structure load flow analysis. Arch Electrical Eng 65(2):203–220

    Article  Google Scholar 

  8. Azis MF, Ryanta A, Putra DFU, Fenno O (2015) Dynamic economic dispatch considering emission using multi-objective flower pollination algorithm. In: ASEAN/Asian Academic Society international conference proceeding series

  9. Shilaja C, Ravi K (2017) Multi-objective optimal power flow problem using enhanced flower pollination algorithm. Gazi Univ J Sci 30(1):79–91

    Google Scholar 

  10. Rajaram R, Kumar KS (2015) Multiobjective power loss reduction using flower pollination algorithm. Int J Control Theory Appl 8(5):2239–2245

    Google Scholar 

  11. Rajalashmi K, Prabha S (2017) A hybrid algorithm for multiobjective optimal power flow problem using particle swarm algorithm and enhanced flower pollination algorithm. Asian J Res Soc Sci Humanities 7(1):923–940

    Google Scholar 

  12. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) Physiobank, physiotoolkit, and physionet. Circulation 101(23):e215–e220

    Article  Google Scholar 

  13. Kumari P, Vaish A (2015) Brainwave based user identification system: a pilot study in robotics environment. Robot Auto Syst 65:15–23

    Article  Google Scholar 

  14. Sharma PK, Vaish A (2016) Individual identification based on neuro-signal using motor movement and imaginary cognitive process. Optik Int J Light Electron Opt 127(4):2143–2148

    Article  Google Scholar 

  15. Alyasseri ZAA, Khader AT, Al-Betar MA, Alomari OA (2020) Person identification using eeg channel selection with hybrid flower pollination algorithm. Pattern Recogn, 107393

  16. Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals review. Neurocomputing 223:26–44

    Article  Google Scholar 

  17. Alyasseri ZAA, Khadeer AT, Al-Betar MA, Abasi A, Makhadmeh S, Ali NS (2019) The effects of EEG feature extraction using multi-wavelet decomposition for mental tasks classification. In: Proceedings of the international conference on information and communication technology, pp 139–146

  18. Rao RP (2013) Brain-computer interfacing: an introduction. Cambridge University Press, Cambridge

  19. Berger H (1929) Über das elektrenkephalogramm des menschen. Eur Arch Psychiatry Clin Neurosci 87(1):527–570

    Google Scholar 

  20. Abdulkader SN, Atia A, Mostafa M-SM (2015) Brain computer interfacing: applications and challenges. Egypt Inf J 16(2):213–230

    Google Scholar 

  21. Prabhakar SK, Rajaguru H, Lee S-W (2020) A framework for schizophrenia eeg signal classification with nature inspired optimization algorithms. IEEE Access 8:39875–39897

    Article  Google Scholar 

  22. Souri A, Ghafour MY, Ahmed AM, Safara F, Yamini A, Hoseyninezhad M (2020) A new machine learning-based healthcare monitoring model for student‘s condition diagnosis in internet of things environment. Soft Comput 24:17111–17121

    Article  Google Scholar 

  23. Alyasseri ZAA, Khader AT, Al-Betar MA, Papa JP, Alomari OA, Makhadmeh SN (2018) Classification of eeg mental tasks using multi-objective flower pollination algorithm for person identification. Int J Integr Eng 10(7)

  24. Kumari P, Vaish A (2014) Brainwave based authentication system: research issues and challenges. Int J Comput Eng Appl 4(1):2

    Google Scholar 

  25. Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 54(2):205–211

    Article  Google Scholar 

  26. El-Dahshan E-SA (2011) Genetic algorithm and wavelet hybrid scheme for ECG signal denoising. Telecommun Syst 46(3):209–215

    Article  Google Scholar 

  27. Kalaivani M, Kalaivani V, Devi VA (2014) Analysis of EEG signal for the detection of brain abnormalities. Int J Comput Appl \(\mathring{R}\) Year

  28. Al-Qazzaz NK, Hamid Bin Mohd Ali S, Ahmad SA, Islam MS, Escudero J (2015) Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task. Sensors 15(11):29015–29035

  29. Alyasseri ZAA, Khader AT, Al-Betar MA, Abualigah LM (2017) Ecg signal denoising using \(\beta \)-hill climbing algorithm and wavelet transform. In: ICIT 2017 the 8th international conference on information technology, pp 1–7

  30. Rahmani AM, Babaei Z, Souri A (2021) Event-driven iot architecture for data analysis of reliable healthcare application using complex event processing. Cluster Comput 24(2):1347–1360

    Article  Google Scholar 

  31. Alyasseri ZAA, Khader AT, Al-Betar MA (2017) Electroencephalogram signals denoising using various mother wavelet functions: a comparative analysis. In: Proceedings of the international conference on imaging, signal processing and communication, pp 100–105

  32. Alyasseri ZAA, Khader AT, Al-Betar MA, Awadallah MA (2018) Hybridizing \(\beta \)-hill climbing with wavelet transform for denoising ECG signals. Inf Sci 429:229–246

    Article  MathSciNet  Google Scholar 

  33. Alyasseri ZAA, Khader AT, Al-Betar MA, Papa JP, Alomari OA, Makhadme SN (2018) An efficient optimization technique of eeg decomposition for user authentication system. In: 2018 2nd International conference on biosignal analysis, processing and systems (ICBAPS), IEEE, pp 1–6

  34. Alyasseri ZAA, Khader AT, Al-Betar MA, Abasi AK, Makhadmeh SN (2021) Eeg signal denoising using hybridizing method between wavelet transform with genetic algorithm. In: Proceedings of the 11th national technical seminar on unmanned system technology 2019, Springer, pp 449–469

  35. Nguyen P, Kim J-M (2016) Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition. Inf Sci 373:499–511

    Article  Google Scholar 

  36. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220. circulation Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218; https://doi.org/10.1161/01.CIR.101.23.e215

  37. Al-Betar MA (2016) b-hill climbing: an exploratory local search. Neural Comput Appl, pp 1–16

  38. Alyasseri ZAA, Khader AT, Al-Betar MA, Papa JP, Alomari OA (2018) Eeg feature extraction for person identification using wavelet decomposition and multi-objective flower pollination algorithm, Ieee. Access 6:76007–76024

    Article  Google Scholar 

  39. Kumar H, Pai SP, Vijay G, Rao R (2014) Wavelet transform for bearing condition monitoring and fault diagnosis: a review. Int J COMADEM 17(1):9–23

    Google Scholar 

  40. Sawant C, Patii HT (2014) Wavelet based ECG signal de-noising. Netw Soft Comput (ICNSC). In: 2014 First international conference on, IEEE, pp 20–24

  41. Mamun M, Al-Kadi M, Marufuzzaman M (2013) Effectiveness of wavelet denoising on electroencephalogram signals. J Appl Res Technol 11(1):156–160

    Article  Google Scholar 

  42. Al-Kadi MI, Reaz MBI, Ali MAM, Liu CY (2014) Reduction of the dimensionality of the EEG channels during scoliosis correction surgeries using a wavelet decomposition technique. Sensors 14(7):13046–13069

    Article  Google Scholar 

  43. Borse S, EEG de-noising using wavelet transform and fast ica. IJISET-Int J Innov Sci Eng Technol

  44. Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  MATH  Google Scholar 

  45. Singh BN, Tiwari AK (2006) Optimal selection of wavelet basis function applied to ecg signal denoising. Digital Signal Process 16(3):275–287

    Article  Google Scholar 

  46. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  47. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308. http://doi.acm.org/10.1145/937503.937505

  48. Alyasseri ZAA, Venkat I, Al-Betar MA, Khader AT (2012) Edge preserving image enhancement via harmony search algorithm. in: Data mining and optimization (DMO), 2012 4th conference on, IEEE, pp 47–52

  49. Al-Betar MA, Alyasseri ZAA, Khader AT, Bolaji AL, Awadallah MA (2016) Gray image enhancement using harmony search. Int J Comput Intell Syst 9(5):932–944

    Article  Google Scholar 

  50. Al-Betar MA, Alyasseri ZAA, Awadallah MA, Doush IA (2020) Coronavirus herd immunity optimizer (chio). Neural Comput Appl, pp 1–32

  51. Bolaji AL, Al-Betar MA, Awadallah MA, Khader AT, Abualigah LM (2016) A comprehensive review: Krill herd algorithm (kh) and its applications. Appl Soft Comput 49:437–446

    Article  Google Scholar 

  52. Makhadmeh SN, Khader AT, Al-Betar MA, Naim S, Abasi AK, Alyasseri ZAA (2021) A novel hybrid grey wolf optimizer with min-conflict algorithm for power scheduling problem in a smart home. Swarm Evol Comput 60:100793

    Article  Google Scholar 

  53. Shehab M, Khader AT, Al-Betar MA (2017) A survey on applications and variants of the cuckoo search algorithm. Appl Soft Comput 61:1041–1059

    Article  Google Scholar 

  54. Alomari OA, Makhadmeh SN, Al-Betar MA, Alyasseri ZAA, Doush IA, Abasi AK, Awadallah MA, Zitar RA (2021) Gene selection for microarray data classification based on grey wolf optimizer enhanced with triz-inspired operators. Knowl Based Syst, p 107034

  55. Abualigah LM, Khader AT, Al-Betar MA, Alyasseri ZAA, Alomari OA, Hanandeh ES (2017) Feature selection with \(\beta \)-hill climbing search for text clustering application. In: Information and communication technology (PICICT), 2017 Palestinian international conference on, IEEE, pp 22–27

  56. Abasi AK, Khader AT, Al-Betar MA, Alyasseri ZAA, Makhadmeh SN, Al-laham M, Naim S (2021) A hybrid salp swarm algorithm with \(\beta \)-hill climbing algorithm for text documents clustering. Algorithms and applications, evolutionary data clustering, p 129

  57. Rodrigues D, Silva GF, Papa JP, Marana AN, Yang X-S (2016) EEG-based person identification through binary flower pollination algorithm. Exp Syst Appl 62:81–90

    Article  Google Scholar 

  58. Alyasseri ZAA, Khader AT, Al-Betar MA, Abasi AK, Makhadmeh SN (2019) EEG signals denoising using optimal wavelet transform hybridized with efficient metaheuristic methods. IEEE Access 8:10584–10605

    Article  Google Scholar 

  59. Jenkal W, Latif R, Toumanari A, Dliou A, El B‘charri O, Maoulainine FM (2016) An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform. Biocyber Biomed Eng 36(3):499–508

    Google Scholar 

  60. Wang J, Ye Y, Pan X, Gao X (2015) Parallel-type fractional zero-phase filtering for ECG signal denoising. Biomed Signal Process Control 18:36–41

    Article  Google Scholar 

  61. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) Bci 2000: a general-purpose brain-computer interface (bci) system. IEEE Trans Biomed Eng 51(6):1034–1043

    Article  Google Scholar 

  62. Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. John Wiley & Sons

  63. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1(6):80–83

    Article  Google Scholar 

  64. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  65. Coello CC, Lechuga MS (2002) Mopso: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No. 02TH8600), vol 2, IEEE, pp 1051–1056

  66. Bhatnagar A, Gupta K, Pandharkar U, Manthalkar R, Jadhav N (2019) Comparative analysis of ICA, PCA-based EASI and wavelet-based unsupervised denoising for EEG signals. In: Computing, communication and signal processing, Springer, pp 749–759

  67. Al-Salman W, Li Y, Wen P (2019) Detecting sleep spindles in EEGs using wavelet fourier analysis and statistical features. Biomed Signal Process Control 48:80–92

    Article  Google Scholar 

  68. Luck SJ (2014) An introduction to the event-related potential technique, MIT press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaid Abdi Alkareem Alyasseri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The category of the article has been updated.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyasseri, Z.A.A., Khader, A.T., Al-Betar, M.A. et al. Multi-objective flower pollination algorithm: a new technique for EEG signal denoising. Neural Comput & Applic 35, 7943–7962 (2023). https://doi.org/10.1007/s00521-021-06757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06757-2

Keywords

Navigation