Abstract
Retinal image analysis is an integral and fundamental step towards the identification and classification of ocular diseases like glaucoma, diabetic retinopathy, macular edema, and cardiovascular diseases through computer-aided diagnosis systems. Various abnormalities are observed through retinal image modalities like fundus, fluorescein angiography, and optical coherence tomography by ophthalmologists, and computer science professionals. Retinal image analysis has gained a lot of importance in recent years due to advances in computational, storage, and image acquisition technologies. Better computational capabilities lead to a rise in the implementation of deep learning-based methods for ocular disease detection. Although deep learning promises better performance in this field, some issues like lack of well-labeled datasets, unavailability of large enough datasets, class imbalance, and model generalizability are yet to be addressed. Also, the real-time implementation of detection methods on new devices or existing hardware is an untouched area. This article highlights the development of retinal image analysis and related issues due to the introduction of AI-based methods. The methods are analyzed in terms of standard performance metrics on various publicly and privately available datasets.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bourne R, Resnikoff S, Ackland P (2020) The global burden of vision impairment IAPB vision atlas. http://atlas.iapb.org/global-burden-vision-impairment. Accessed 18 May 2021
Bourne RR, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H et al (2017) Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health 5(9):e888–e897
WHO (2021) Vision impairment and blindness. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 18 May 2021
Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T et al (2020) AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Informa 24(7):1837–1857
Pesapane F, Codari M, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2(1):35
Tong Y, Lu W, Yu Y, Shen Y (2020) Application of machine learning in ophthalmic imaging modalities. Eye Vis 7:1–15
Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY (2019) Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 103(2):167–175
Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y (2018) Applications of artificial intelligence in ophthalmology: general overview. J Ophthalmol 2018
Hogarty DT, Mackey DA, Hewitt AW (2019) Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol 47(1):128–139
Tan Z, Scheetz J, He M (2019) Artificial intelligence in ophthalmology: accuracy, challenges, and clinical application
Rabiolo A, Parravano M, Querques L, Cicinelli MV, Carnevali A, Sacconi R, Centoducati T, Vujosevic S, Bandello F, Querques G (2017) Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin. Ophthalmol. (Auckland, NZ) 11:803
Kolb H (2020) Simple anatomy of the retina, https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/. Accessed 18 May 2021
Abràmoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208
Gour N, Khanna P (2020) Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomed Signal Process Control 102329
Gullstrand A (1910) Neue methoden der reflexlosen ophthalmoskopie. Berichte Deutsche Ophthalmologische Gesellschaft 36(8):326
Yannuzzi LA, Ober MD, Slakter JS, Spaide RF, Fisher YL, Flower RW, Rosen R (2004) Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 137(3):511–524
Shankle J (2004) Ophthalmic photography: retinal photography, angiography, and electronic imaging. Surv Ophthalmol 49(2):264
(2019) Ocular disease intelligent recognition (odir-2019), https://odir2019.grand-challenge.org/. Accessed 18 May2021
Thakur N, Juneja M (2018) Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control 42:162–189
Khaderi K, Ahmed K, Berry J, Labriola L, Cornwell R (2011) Retinal imaging modalities: advantages and limitations for clinical practice. Retinal Phys 8(3)
Mackay DD, Bruce BB (2016) Non-mydriatic fundus photography: a practical review for the neurologist. Pract Neurol 16(5):343–351
Novotny HR, Alvis DL (1961) A method of photographing fluorescence in circulating blood in the human retina. Circulation 24(1):82–86
Martinez-Perez ME, Hughes AD, Thom SA, Bharath AA, Parker KH (2007) Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 11(1):47–61
Salz DA, Witkin AJ (2015) Imaging in diabetic retinopathy. Middle East Afr J Ophthalmol 22(2):145
Fayed AE, Fawzi AA (2019) Octa vs. dye: The pros and cons, https://www.reviewofophthalmology.com/article/octa-vs-dye-the-pros-and-cons. Accessed 18 May 2021
Ding L, Bawany MH, Kuriyan AE, Ramchandran RS, Wykoff CC, Sharma G (2020) A novel deep learning pipeline for retinal vessel detection in fluorescein angiography. IEEE Trans Image Process
Drakulich D (2014) OCT—What we can see? https://www.hoaecc.org/includes/dspDownload.cfm?nLectureMaterialID=406. Accessed 18 May 2021
Strong J (2020) Retinal oct imaging. https://www.opsweb.org/page/RetinalOCT. Accessed 18 May 2021
Reichel E, Ho J, Duker JS (2009) Oct units: Which one is right for me? a detailed look at the principles behind this pervasive technology and the variety of options available. https://www.reviewofophthalmology.com/article/oct-units-which-one-is-right-for-me, Accessed 18 May 2021
Allen L (1964) Ocular fundus photography*: suggestions for achieving consistently good pictures and instructions for stereoscopic photography. Am J Ophthalmol 57(1):13–28
Bressler NM, Ahmed IIK (2006) Essential OCT: the stratus OCT primer. Carl Zeiss Medtec, Incorporated
Fawcett T (2006) An introduction to roc analysis. Pattern recognition letters 27(8):861–874
Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In: Pattern recognition (icpr), 2010 20th international conference on, IEEE, pp 2366–2369
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
Sivaswamy J, Krishnadas S, Joshi GD, Jain M, Tabish AUS (2014) Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation. In: IEEE 11th international symposium on biomedical imaging (ISBI). IEEE 2014:53–56
Fumero F, Alayón S, Sanchez JL, Sigut J, Gonzalez-Hernandez M (2011) Rim-one: an open retinal image database for optic nerve evaluation. In: 24th international symposium on computer-based medical systems (CBMS). IEEE 2011:1–6
Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein JC (2014) Feedback on a publicly distributed image database: the messidor database. Image Anal Stereol 33(3):231–234
Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958
Zhang Z, Yin FS, Liu J, Wong WK, Tan NM, Lee BH, Cheng J, Wong TY (2010) Origa-light: an online retinal fundus image database for glaucoma analysis and research. In: Annual international conference of the IEEE engineering in medicine and biology. IEEE 2010:3065–3068
Niemeijer M, Xu X, Dumitrescu AV, Gupta P, Van Ginneken B, Folk JC, Abramoff MD (2011) Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans Med Imaging 30(11):1941–1950
Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23(2):256–264
Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3):25
Almazroa A, Alodhayb S, Osman E, Ramadan E, Hummadi M, Dlaim M, Alkatee M, Raahemifar K, Lakshminarayanan V (2018) Retinal fundus images for glaucoma analysis: the riga dataset. In: Medical imaging 2018: imaging informatics for healthcare, research, and applications, Vol 10579, International Society for Optics and Photonics, p 105790B
Al-Diri B, Hunter A, Steel D, Habib M, Hudaib T, Berry S (2008) A reference data set for retinal vessel profiles. In: 30th annual international conference of the IEEE engineering in medicine and biology society. IEEE 2008:2262–2265
Köhler T, Budai A, Kraus MF, Odstrčilik J, Michelson G, Hornegger J (2013) Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems, IEEE, pp 95–100
Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509
Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Invest Ophthalmol Visual Sci 50(5):2004–2010
Akram MU, Akbar S, Hassan T, Khawaja SG, Yasin U, Basit I (2020) Data on fundus images for vessels segmentation, detection of hypertensive retinopathy, diabetic retinopathy and papilledema. Data Brief 29:105282
Alipour SHM, Rabbani H, Akhlaghi MR (2012) Diabetic retinopathy grading by digital curvelet transform. Comput Math Methods Med 2012
Schiffers F, Yu Z, Arguin S, Maier A, Ren Q (2018) Synthetic fundus fluorescein angiography using deep neural networks. In: Bildverarbeitung für die Medizin 2018, Springer, pp 234–238
Fang L, Li S, Nie Q, Izatt JA, Toth CA, Farsiu S (2012) Sparsity based denoising of spectral domain optical coherence tomography images. Biomed Optic Express 3(5):927–942
Kafieh R, Rabbani H, Selesnick I (2014) Three dimensional data-driven multi scale atomic representation of optical coherence tomography. IEEE Trans Med Imaging 34(5):1042–1062
Tian J, Varga B, Tatrai E, Fanni P, Somfai GM, Smiddy WE, Debuc DC (2016) Performance evaluation of automated segmentation software on optical coherence tomography volume data. J Biophoton 9(5):478–489
Gholami P, Roy P, Parthasarathy MK, Lakshminarayanan V (2020) Octid: optical coherence tomography image database. Comput Electr Eng 81:106532
Kafieh R, Rabbani H, Abramoff MD, Sonka M (2013) Intra-retinal layer segmentation of 3d optical coherence tomography using coarse grained diffusion map. Med Image Anal 17(8):907–928
Chiu SJ, Allingham MJ, Mettu PS, Cousins SW, Izatt JA, Farsiu S (2015) Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Optic express 6(4):1172–1194
Abràmoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, Massin P, Cochener B, Gain P, Tang L et al (2013) Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 131(3):351–357
Sng CC, Foo L-L, Cheng C-Y, Allen JC Jr, He M, Krishnaswamy G, Nongpiur ME, Friedman DS, Wong TY, Aung T (2012) Determinants of anterior chamber depth: the singapore chinese eye study. Ophthalmology 119(6):1143–1150
Pan C-W, Wong T-Y, Chang L, Lin X-Y, Lavanya R, Zheng Y-F, Kok Y-O, Wu R-Y, Aung T, Saw S-M (2011) Ocular biometry in an urban indian population: the singapore indian eye study (sindi). Invest Ophthalmol visual Sci 52(9):6636–6642
Pan X, Jin K, Cao J, Liu Z, Wu J, You K, Lu Y, Xu Y, Su Z, Jiang J et al (2020) Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Graefe’s Arch Clin Exp Ophthalmol 258(4):779–785
Li HH, Abraham JR, Sevgi DD, Srivastava SK, Hach JM, Whitney J, Vasanji A, Reese JL, Ehlers JP (2020) Automated quality assessment and image selection of ultra-widefield fluorescein angiography images through deep learning. Trans Vis Sci Technol 9(2):52
Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S (2014) Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Optic Express 5(10):3568–3577
Kermany D, Zhang K, Goldbaum M (2018) Large dataset of labeled optical coherence tomography (oct) and chest x-ray images. Mendeley Data, v3 http://dx. doi. org/10.17632/rscbjbr9sj 3
Rasti R, Rabbani H, Mehridehnavi A, Hajizadeh F (2017) Macular oct classification using a multi-scale convolutional neural network ensemble. IEEE Trans Med Imaging 37(4):1024–1034
Liu Y-Y, Chen M, Ishikawa H, Wollstein G, Schuman JS, Rehg JM (2011) Automated macular pathology diagnosis in retinal oct images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Med image Anal 15(5):748–759
Venhuizen FG, van Ginneken B, van Asten F, van Grinsven MJ, Fauser S, Hoyng CB, Theelen T, Sánchez CI (2017) Automated staging of age-related macular degeneration using optical coherence tomography. Invest Ophthalmol Visual Sci 58(4):2318–2328
Singh N, Kaur L (2015) A survey on blood vessel segmentation methods in retinal images. In: 2015 international conference on electronic design, computer networks and automated verification (EDCAV), IEEE, pp 23–28
Imran A, Li J, Pei Y, Yang J-J, Wang Q (2019) Comparative analysis of vessel segmentation techniques in retinal images. IEEE Access 7:114862–114887
Srinidhi CL, Aparna P, Rajan J (2017) Recent advancements in retinal vessel segmentation. J Med Syst 41(4):70
Stolte S, Fang R (2020) A survey on medical image analysis in diabetic retinopathy. Med Image Anal 101742
Awan AW, Awan ZW, Akram MU (2015) A robust algorithm for segmentation of blood vessels in the presence of lesions in retinal fundus images. In: 2015 IEEE international conference on imaging systems and techniques (IST), IEEE, pp 1–6
Perez-Rovira A, Zutis K, Hubschman JP, Trucco E (2011) Improving vessel segmentation in ultra-wide field-of-view retinal fluorescein angiograms. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE 2011:2614–2617
Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807
Ding L, Kuriyan A, Ramchandran R, Sharma G (2017) Multi-scale morphological analysis for retinal vessel detection in wide-field fluorescein angiography. In: IEEE Western New York image and signal processing workshop (WNYISPW). IEEE 2017:1–5
Tan N-M, Xu Y, Goh WB, Liu J (2015) Robust multi-scale superpixel classification for optic cup localization. Comput Med Imaging Graph 40:182–193
Sarathi MP, Dutta MK, Singh A, Travieso CM (2016) Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed Signal Process Control 25:108–117
Mittapalli PS, Kande GB (2016) Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control 24:34–46
Gour N, Khanna P (2020) Automated glaucoma detection using gist and pyramid histogram of oriented gradients (phog) descriptors. Pattern Recogn Lett 137:3–11
Guo L, Yang J-J, Peng L, Li J, Liang Q (2015) A computer-aided healthcare system for cataract classification and grading based on fundus image analysis. Comput Industr 69:72–80
Acharya UR, Mookiah MRK, Koh JE, Tan JH, Bhandary SV, Rao AK, Hagiwara Y, Chua CK, Laude A (2017) Automated diabetic macular edema (dme) grading system using dwt, dct features and maculopathy index. Comput Biol Med 84:59–68
Agurto C, Murray V, Barriga E, Murillo S, Pattichis M, Davis H, Russell S, Abràmoff M, Soliz P (2010) Multiscale am-fm methods for diabetic retinopathy lesion detection. IEEE Trans Med Imaging 29(2):502–512
Murakami T, Ogawa K (2018) Speckle noise reduction of optical coherence tomography images with a wavelet transform. In: IEEE 14th international colloquium on signal processing and its applications (CSPA). IEEE 2018:31–34
Li M, Idoughi R, Choudhury B, Heidrich W (2017) Statistical model for oct image denoising. Biomed Optic Express 8(9):3903–3917
Chong B, Zhu Y-K (2013) Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified bm3d filter. Optic Commun 291:461–469
Xu J, Ou H, Sun C, Chui P-C, Yang VX, Lam EY, Wong KK (2013) Wavelet domain compounding for speckle reduction in optical coherence tomography. J Biomed Optic 18(9):096002
Du Y, Liu G, Feng G, Chen Z (2014) Speckle reduction in optical coherence tomography images based on wave atoms. J Biomed Optic 19(5):056009
Xia S, Huang Y, Peng S, Wu Y, Tan X (2016) Adaptive anisotropic diffusion for noise reduction of phase images in fourier domain doppler optical coherence tomography. Biomed Optic Express 7(8):2912–2926
Hussain MA, Bhuiyan A, Luu CD, Theodore Smith R, Guymer RH, Ishikawa H, Schuman JS, Ramamohanarao K (2018) Classification of healthy and diseased retina using sd-oct imaging and random forest algorithm. PloS One 13(6):e0198281
Lemaître G, Rastgoo M, Massich J, Cheung CY, Wong TY, Lamoureux E, Milea D, Mériaudeau F, Sidibé D (2016) Classification of sd-oct volumes using local binary patterns: experimental validation for dme detection. J Ophthalmol 2016
Venhuizen FG, van Ginneken B, Bloemen B, van Grinsven MJ, Philipsen R, Hoyng C, Theelen T, Sánchez CI (2015) Automated age-related macular degeneration classification in oct using unsupervised feature learning. In: Medical imaging 2015: computer-aided diagnosis, Vol 9414, International Society for Optics and Photonics, p 94141I
Bresnick J (2018) What is deep learning and how will it change healthcare?, Health IT Analytics 30
Moccia S, De Momi E, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics. Comput Methods Program Biomed 158:71–91
Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380
Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118
Yan Z, Yang X, Cheng K-T (2018) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 65(9):1912–1923
Maninis K-K, Pont-Tuset J, Arbeláez P, Van Gool L (2016) Deep retinal image understanding. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 140–148
Akram F, Singh VK, Rashwan HA, Abdel-Nasser M, Sarker M, Kamal M, Pandey N, Puig D (2019) Adversarial learning with multiscale features and kernel factorization for retinal blood vessel segmentation, arXiv preprint arXiv:1907.02742
Zhao H, Li H, Maurer-Stroh S, Guo Y, Deng Q, Cheng L (2018) Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Trans Med Imaging 38(1):46–56
Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37(7):1597–1605
Gu Z, Liu P, Zhou K, Jiang Y, Mao H, Cheng J, Liu J (2018) Deepdisc: optic disc segmentation based on atrous convolution and spatial pyramid pooling. In: Computational pathology and ophthalmic medical image analysis, Springer, pp 253–260
Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X (2018) Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging 37(11):2493–2501
Al-Bander B, Al-Nuaimy W, Williams BM, Zheng Y (2018) Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed Signal Process Control 40:91–101
Araújo T, Aresta G, Galdran A, Costa P, Mendonça AM, Campilho A (2018) Uolo-automatic object detection and segmentation in biomedical images. Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp. 165–173
Huang Y, Zhong Z, Yuan J, Tang X (2020) Efficient and robust optic disc detection and fovea localization using region proposal network and cascaded network. Biomed Signal Process Control 60:101939
Graham B (2015) Kaggle diabetic retinopathy detection competition report, University of Warwick
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22):2402–2410
Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, Peng L, Webster DR (2018) Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125(8):1264–1272
Gangwar AK, Ravi V (2020) Diabetic retinopathy detection using transfer learning and deep learning. Evolution in computational intelligence, Springer, pp 679–689
Qummar S, Khan FG, Shah S, Khan A, Shamshirband S, Rehman ZU, Khan IA, Jadoon W (2019) A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7:150530–150539
Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A (2019) Cnns for automatic glaucoma assessment using fundus images: an extensive validation. Biomed Eng Online 18(1):29
Joshi RC, Dutta MK, Sikora P, Kiac M (2020) Efficient convolutional neural network based optic disc analysis using digital fundus images. In: 2020 43rd international conference on telecommunications and signal processing (TSP), IEEE, pp 533–536
Li L, Xu M, Wang X, Jiang L, Liu H (2019) Attention based glaucoma detection: a large-scale database and cnn model. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 10571–10580
Bajwa MN, Malik MI, Siddiqui SA, Dengel A, Shafait F, Neumeier W, Ahmed S (2019) Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med Inform Decis Making 19(1):136
Islam MT, Imran SA, Arefeen A, Hasan M, Shahnaz C (2019) Source and camera independent ophthalmic disease recognition from fundus image using neural network. In: 2019 IEEE international conference on signal processing, information, communication and systems (SPICSCON), IEEE, pp 59–63
Jordi CC, Joan MNDR, Carles VR (2020) Ocular disease intelligent recognition through deep learning architectures. In: Universitat Oberta de Catalunya
Li C, Ye J, He J, Wang S, Qiao Y, Gu L (2020) Dense correlation network for automated multi-label ocular disease detection with paired color fundus photographs. In: IEEE 17th international symposium on biomedical imaging (ISBI). IEEE 2020:1–4
Jin K, Pan X, You K, Wu J, Liu Z, Cao J, Lou L, Xu Y, Su Z, Yao K et al (2020) Automatic detection of non-perfusion areas in diabetic macular edema from fundus fluorescein angiography for decision making using deep learning. Sci Rep 10(1):1–7
Chen Z, Zeng Z, Shen H, Zheng X, Dai P, Ouyang P (2020) Dn-gan: denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images. Biomed Signal Process Control 55:101632
Shi F, Cai N, Gu Y, Hu D, Ma Y, Chen Y, Chen X (2019) Despecnet: a cnn-based method for speckle reduction in retinal optical coherence tomography images. Phys Med Biol 64(17):175010
Qiu B, Huang Z, Liu X, Meng X, You Y, Liu G, Yang K, Maier A, Ren Q, Lu Y (2020) Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function. Biomed Optic Express 11(2):817–830
Gour N, Khanna P (2019) Speckle denoising in optical coherence tomography images using residual deep convolutional neural network. Multimed Tools Appl 1–17
Mishra Z, Ganegoda A, Selicha J, Wang Z, Sadda SR, Hu Z (2020) Automated retinal layer segmentation using graph-based algorithm incorporating deep-learning-derived information. Sci Rep 10(1):1–8
Pekala M, Joshi N, Liu TA, Bressler NM, DeBuc DC, Burlina P (2019) Deep learning based retinal oct segmentation. Comput Biol Med 114:103445
Ngo L, Cha J, Han J-H (2019) Deep neural network regression for automated retinal layer segmentation in optical coherence tomography images. IEEE Trans Image Process 29:303–312
Li F, Chen H, Liu Z, Zhang X, Wu Z (2019) Fully automated detection of retinal disorders by image-based deep learning. Graefe’s Arch Clin Exp Ophthalmol 257(3):495–505
Huang L, He X, Fang L, Rabbani H, Chen X (2019) Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network. IEEE Signal Process Lett 26(7):1026–1030
Rasti R, Mehridehnavi A, Rabbani H, Hajizadeh F (2018) Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier. J Biomed Optic 23(3):035005
Rong Y, Xiang D, Zhu W, Yu K, Shi F, Fan Z, Chen X (2018) Surrogate-assisted retinal oct image classification based on convolutional neural networks. IEEE J Biomed Health Inform 23(1):253–263
Tsuji T, Hirose Y, Fujimori K, Hirose T, Oyama A, Saikawa Y, Mimura T, Shiraishi K, Kobayashi T, Mizota A et al (2020) Classification of optical coherence tomography images using a capsule network. BMC Ophthalmol 20(1):1–9
Odaibo SG, Odaibo DG (2021) Systems and methods using weighted-ensemble supervised-learning for automatic detection of ophthalmic disease from images, uS Patent 10,963,737 (Mar. 30)
(2020) Netra.ai—a comprehensive ophthalmology platform. https://leben.ai/. Accessed 18 May 2021
Seo E, Jaccard N, Trikha S, Pasquale LR, Song BJ (2018) Automated evaluation of optic disc images for manifest glaucoma detection using a deep-learning, neural network-based algorithm. Invest Ophthalmol Visual Sci 59(9):2080
Sosale B, Sosale AR, Murthy H, Sengupta S, Naveenam M (2020) Medios-an offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Indian J Ophthalmol 68(2):391
Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC (2018) Pivotal trial of an autonomous ai-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Med 1(1):1–8
Bellemo V, Lim G, Rim TH, Tan GS, Cheung CY, Sadda S, He M-G, Tufail A, Lee ML, Hsu W et al (2019) Artificial intelligence screening for diabetic retinopathy: the real-world emerging application. Curr Diabet Rep 19(9):1–12
Nguyen HV, Tan GSW, Tapp RJ, Mital S, Ting DSW, Wong HT, Tan CS, Laude A, Tai ES, Tan NC et al (2016) Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in singapore. Ophthalmology 123(12):2571–2580
Peto T, Tadros C (2012) Screening for diabetic retinopathy and diabetic macular edema in the united kingdom. Curr Diabet Rep 12(4):338–345
Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, Prescott GJ, Sharp PF, Olson JA (2007) The efficacy of automated disease/no disease grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol 91(11):1512–1517
Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87
Bonaldi L, Menti E, Ballerini L, Ruggeri A, Trucco E (2016) Automatic generation of synthetic retinal fundus images: vascular network. MIUA, pp 54–60
Costa P, Galdran A, Meyer MI, Niemeijer M, Abràmoff M, Mendonça AM, Campilho A (2017) End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging 37(3):781–791
Raman R, Srinivasan S, Virmani S, Sivaprasad S, Rao C, Rajalakshmi R (2019) Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye 33(1):97–109
Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama 318(22):2211–2223
Lee J-G, Jun S, Cho Y-W, Lee H, Kim GB, Seo JB, Kim N (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584
Yang HHS, Rim TH, Tham YC, Yoo TK, Lee G, Kim Y, Wong TY, Cheng CY (2020) Deep learning system differentiates ethnicities from fundus photographs of a multi-ethnic asian population. Invest Ophthalmol Visual Sci 61(7):5248
Bhatia KK, Graham MS, Terry L, Wood A, Tranos P, Trikha S, Jaccard N (2020) Disease classification of macular optical coherence tomography scans using deep learning software: validation on independent, multicenter data. Retina 40(8):1549–1557
Buda M, Maki A, Mazurowski MA (2018) A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw 106:249–259
Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. Advances in neural information processing systems, pp 2234–2242
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2921–2929
Roy AG, Conjeti S, Karri SPK, Sheet D, Katouzian A, Wachinger C, Navab N (2017) Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Optic Express 8(8):3627–3642
Ding L, Kuriyan A, Ramchandran R, Sharma G (2018) Retinal vessel detection in wide-field fluorescein angiography with deep neural networks: A novel training data generation approach. In: 2018 25th IEEE international conference on image processing (ICIP), IEEE, pp 356–360
Goswami P, Mukherjee A, Sarkar B, Yang L (2021) Multi-agent-based smart power management for remote health monitoring. Neural Comput Appl 1–10
Singh A, Anand A, Lv Z, Ko H, Mohan A (2021) A survey on healthcare data: a security perspective. ACM Trans Multimed Comput Commun Appl 17(2s):1–26
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gour, N., Tanveer, M. & Khanna, P. Challenges for ocular disease identification in the era of artificial intelligence. Neural Comput & Applic 35, 22887–22909 (2023). https://doi.org/10.1007/s00521-021-06770-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-021-06770-5