Skip to main content

Advertisement

Log in

Challenges for ocular disease identification in the era of artificial intelligence

  • S.I.: Neural Computing for IOT based Intelligent Healthcare Systems
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Retinal image analysis is an integral and fundamental step towards the identification and classification of ocular diseases like glaucoma, diabetic retinopathy, macular edema, and cardiovascular diseases through computer-aided diagnosis systems. Various abnormalities are observed through retinal image modalities like fundus, fluorescein angiography, and optical coherence tomography by ophthalmologists, and computer science professionals. Retinal image analysis has gained a lot of importance in recent years due to advances in computational, storage, and image acquisition technologies. Better computational capabilities lead to a rise in the implementation of deep learning-based methods for ocular disease detection. Although deep learning promises better performance in this field, some issues like lack of well-labeled datasets, unavailability of large enough datasets, class imbalance, and model generalizability are yet to be addressed. Also, the real-time implementation of detection methods on new devices or existing hardware is an untouched area. This article highlights the development of retinal image analysis and related issues due to the introduction of AI-based methods. The methods are analyzed in terms of standard performance metrics on various publicly and privately available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bourne R, Resnikoff S, Ackland P (2020) The global burden of vision impairment IAPB vision atlas. http://atlas.iapb.org/global-burden-vision-impairment. Accessed 18 May 2021

  2. Bourne RR, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H et al (2017) Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health 5(9):e888–e897

    Google Scholar 

  3. WHO (2021) Vision impairment and blindness. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 18 May 2021

  4. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T et al (2020) AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Informa 24(7):1837–1857

    Google Scholar 

  5. Pesapane F, Codari M, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2(1):35

    Google Scholar 

  6. Tong Y, Lu W, Yu Y, Shen Y (2020) Application of machine learning in ophthalmic imaging modalities. Eye Vis 7:1–15

    Google Scholar 

  7. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY (2019) Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 103(2):167–175

    Google Scholar 

  8. Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y (2018) Applications of artificial intelligence in ophthalmology: general overview. J Ophthalmol 2018

  9. Hogarty DT, Mackey DA, Hewitt AW (2019) Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol 47(1):128–139

    Google Scholar 

  10. Tan Z, Scheetz J, He M (2019) Artificial intelligence in ophthalmology: accuracy, challenges, and clinical application

  11. Rabiolo A, Parravano M, Querques L, Cicinelli MV, Carnevali A, Sacconi R, Centoducati T, Vujosevic S, Bandello F, Querques G (2017) Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin. Ophthalmol. (Auckland, NZ) 11:803

    Google Scholar 

  12. Kolb H (2020) Simple anatomy of the retina, https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/. Accessed 18 May 2021

  13. Abràmoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208

    Google Scholar 

  14. Gour N, Khanna P (2020) Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomed Signal Process Control 102329

  15. Gullstrand A (1910) Neue methoden der reflexlosen ophthalmoskopie. Berichte Deutsche Ophthalmologische Gesellschaft 36(8):326

    Google Scholar 

  16. Yannuzzi LA, Ober MD, Slakter JS, Spaide RF, Fisher YL, Flower RW, Rosen R (2004) Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 137(3):511–524

    Google Scholar 

  17. Shankle J (2004) Ophthalmic photography: retinal photography, angiography, and electronic imaging. Surv Ophthalmol 49(2):264

    Google Scholar 

  18. (2019) Ocular disease intelligent recognition (odir-2019), https://odir2019.grand-challenge.org/. Accessed 18 May2021

  19. Thakur N, Juneja M (2018) Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control 42:162–189

    Google Scholar 

  20. Khaderi K, Ahmed K, Berry J, Labriola L, Cornwell R (2011) Retinal imaging modalities: advantages and limitations for clinical practice. Retinal Phys 8(3)

  21. Mackay DD, Bruce BB (2016) Non-mydriatic fundus photography: a practical review for the neurologist. Pract Neurol 16(5):343–351

    Google Scholar 

  22. Novotny HR, Alvis DL (1961) A method of photographing fluorescence in circulating blood in the human retina. Circulation 24(1):82–86

    Google Scholar 

  23. Martinez-Perez ME, Hughes AD, Thom SA, Bharath AA, Parker KH (2007) Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 11(1):47–61

    Google Scholar 

  24. Salz DA, Witkin AJ (2015) Imaging in diabetic retinopathy. Middle East Afr J Ophthalmol 22(2):145

    Google Scholar 

  25. Fayed AE, Fawzi AA (2019) Octa vs. dye: The pros and cons, https://www.reviewofophthalmology.com/article/octa-vs-dye-the-pros-and-cons. Accessed 18 May 2021

  26. Ding L, Bawany MH, Kuriyan AE, Ramchandran RS, Wykoff CC, Sharma G (2020) A novel deep learning pipeline for retinal vessel detection in fluorescein angiography. IEEE Trans Image Process

  27. Drakulich D (2014) OCT—What we can see? https://www.hoaecc.org/includes/dspDownload.cfm?nLectureMaterialID=406. Accessed 18 May 2021

  28. Strong J (2020) Retinal oct imaging. https://www.opsweb.org/page/RetinalOCT. Accessed 18 May 2021

  29. Reichel E, Ho J, Duker JS (2009) Oct units: Which one is right for me? a detailed look at the principles behind this pervasive technology and the variety of options available. https://www.reviewofophthalmology.com/article/oct-units-which-one-is-right-for-me, Accessed 18 May 2021

  30. Allen L (1964) Ocular fundus photography*: suggestions for achieving consistently good pictures and instructions for stereoscopic photography. Am J Ophthalmol 57(1):13–28

    Google Scholar 

  31. Bressler NM, Ahmed IIK (2006) Essential OCT: the stratus OCT primer. Carl Zeiss Medtec, Incorporated

    Google Scholar 

  32. Fawcett T (2006) An introduction to roc analysis. Pattern recognition letters 27(8):861–874

    MathSciNet  Google Scholar 

  33. Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In: Pattern recognition (icpr), 2010 20th international conference on, IEEE, pp 2366–2369

  34. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Google Scholar 

  35. Sivaswamy J, Krishnadas S, Joshi GD, Jain M, Tabish AUS (2014) Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation. In: IEEE 11th international symposium on biomedical imaging (ISBI). IEEE 2014:53–56

  36. Fumero F, Alayón S, Sanchez JL, Sigut J, Gonzalez-Hernandez M (2011) Rim-one: an open retinal image database for optic nerve evaluation. In: 24th international symposium on computer-based medical systems (CBMS). IEEE 2011:1–6

  37. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein JC (2014) Feedback on a publicly distributed image database: the messidor database. Image Anal Stereol 33(3):231–234

    MATH  Google Scholar 

  38. Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958

    Google Scholar 

  39. Zhang Z, Yin FS, Liu J, Wong WK, Tan NM, Lee BH, Cheng J, Wong TY (2010) Origa-light: an online retinal fundus image database for glaucoma analysis and research. In: Annual international conference of the IEEE engineering in medicine and biology. IEEE 2010:3065–3068

  40. Niemeijer M, Xu X, Dumitrescu AV, Gupta P, Van Ginneken B, Folk JC, Abramoff MD (2011) Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans Med Imaging 30(11):1941–1950

    Google Scholar 

  41. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23(2):256–264

    Google Scholar 

  42. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3):25

    Google Scholar 

  43. Almazroa A, Alodhayb S, Osman E, Ramadan E, Hummadi M, Dlaim M, Alkatee M, Raahemifar K, Lakshminarayanan V (2018) Retinal fundus images for glaucoma analysis: the riga dataset. In: Medical imaging 2018: imaging informatics for healthcare, research, and applications, Vol 10579, International Society for Optics and Photonics, p 105790B

  44. Al-Diri B, Hunter A, Steel D, Habib M, Hudaib T, Berry S (2008) A reference data set for retinal vessel profiles. In: 30th annual international conference of the IEEE engineering in medicine and biology society. IEEE 2008:2262–2265

  45. Köhler T, Budai A, Kraus MF, Odstrčilik J, Michelson G, Hornegger J (2013) Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems, IEEE, pp 95–100

  46. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Google Scholar 

  47. Owen CG, Rudnicka AR, Mullen R, Barman SA, Monekosso D, Whincup PH, Ng J, Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Invest Ophthalmol Visual Sci 50(5):2004–2010

    Google Scholar 

  48. Akram MU, Akbar S, Hassan T, Khawaja SG, Yasin U, Basit I (2020) Data on fundus images for vessels segmentation, detection of hypertensive retinopathy, diabetic retinopathy and papilledema. Data Brief 29:105282

    Google Scholar 

  49. Alipour SHM, Rabbani H, Akhlaghi MR (2012) Diabetic retinopathy grading by digital curvelet transform. Comput Math Methods Med 2012

  50. Schiffers F, Yu Z, Arguin S, Maier A, Ren Q (2018) Synthetic fundus fluorescein angiography using deep neural networks. In: Bildverarbeitung für die Medizin 2018, Springer, pp 234–238

  51. Fang L, Li S, Nie Q, Izatt JA, Toth CA, Farsiu S (2012) Sparsity based denoising of spectral domain optical coherence tomography images. Biomed Optic Express 3(5):927–942

    Google Scholar 

  52. Kafieh R, Rabbani H, Selesnick I (2014) Three dimensional data-driven multi scale atomic representation of optical coherence tomography. IEEE Trans Med Imaging 34(5):1042–1062

    Google Scholar 

  53. Tian J, Varga B, Tatrai E, Fanni P, Somfai GM, Smiddy WE, Debuc DC (2016) Performance evaluation of automated segmentation software on optical coherence tomography volume data. J Biophoton 9(5):478–489

    Google Scholar 

  54. Gholami P, Roy P, Parthasarathy MK, Lakshminarayanan V (2020) Octid: optical coherence tomography image database. Comput Electr Eng 81:106532

    Google Scholar 

  55. Kafieh R, Rabbani H, Abramoff MD, Sonka M (2013) Intra-retinal layer segmentation of 3d optical coherence tomography using coarse grained diffusion map. Med Image Anal 17(8):907–928

    Google Scholar 

  56. Chiu SJ, Allingham MJ, Mettu PS, Cousins SW, Izatt JA, Farsiu S (2015) Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Optic express 6(4):1172–1194

    Google Scholar 

  57. Abràmoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, Massin P, Cochener B, Gain P, Tang L et al (2013) Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 131(3):351–357

    Google Scholar 

  58. Sng CC, Foo L-L, Cheng C-Y, Allen JC Jr, He M, Krishnaswamy G, Nongpiur ME, Friedman DS, Wong TY, Aung T (2012) Determinants of anterior chamber depth: the singapore chinese eye study. Ophthalmology 119(6):1143–1150

    Google Scholar 

  59. Pan C-W, Wong T-Y, Chang L, Lin X-Y, Lavanya R, Zheng Y-F, Kok Y-O, Wu R-Y, Aung T, Saw S-M (2011) Ocular biometry in an urban indian population: the singapore indian eye study (sindi). Invest Ophthalmol visual Sci 52(9):6636–6642

    Google Scholar 

  60. Pan X, Jin K, Cao J, Liu Z, Wu J, You K, Lu Y, Xu Y, Su Z, Jiang J et al (2020) Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Graefe’s Arch Clin Exp Ophthalmol 258(4):779–785

    Google Scholar 

  61. Li HH, Abraham JR, Sevgi DD, Srivastava SK, Hach JM, Whitney J, Vasanji A, Reese JL, Ehlers JP (2020) Automated quality assessment and image selection of ultra-widefield fluorescein angiography images through deep learning. Trans Vis Sci Technol 9(2):52

    Google Scholar 

  62. Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S (2014) Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Optic Express 5(10):3568–3577

    Google Scholar 

  63. Kermany D, Zhang K, Goldbaum M (2018) Large dataset of labeled optical coherence tomography (oct) and chest x-ray images. Mendeley Data, v3 http://dx. doi. org/10.17632/rscbjbr9sj 3

  64. Rasti R, Rabbani H, Mehridehnavi A, Hajizadeh F (2017) Macular oct classification using a multi-scale convolutional neural network ensemble. IEEE Trans Med Imaging 37(4):1024–1034

    Google Scholar 

  65. Liu Y-Y, Chen M, Ishikawa H, Wollstein G, Schuman JS, Rehg JM (2011) Automated macular pathology diagnosis in retinal oct images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Med image Anal 15(5):748–759

    Google Scholar 

  66. Venhuizen FG, van Ginneken B, van Asten F, van Grinsven MJ, Fauser S, Hoyng CB, Theelen T, Sánchez CI (2017) Automated staging of age-related macular degeneration using optical coherence tomography. Invest Ophthalmol Visual Sci 58(4):2318–2328

    Google Scholar 

  67. Singh N, Kaur L (2015) A survey on blood vessel segmentation methods in retinal images. In: 2015 international conference on electronic design, computer networks and automated verification (EDCAV), IEEE, pp 23–28

  68. Imran A, Li J, Pei Y, Yang J-J, Wang Q (2019) Comparative analysis of vessel segmentation techniques in retinal images. IEEE Access 7:114862–114887

    Google Scholar 

  69. Srinidhi CL, Aparna P, Rajan J (2017) Recent advancements in retinal vessel segmentation. J Med Syst 41(4):70

    Google Scholar 

  70. Stolte S, Fang R (2020) A survey on medical image analysis in diabetic retinopathy. Med Image Anal 101742

  71. Awan AW, Awan ZW, Akram MU (2015) A robust algorithm for segmentation of blood vessels in the presence of lesions in retinal fundus images. In: 2015 IEEE international conference on imaging systems and techniques (IST), IEEE, pp 1–6

  72. Perez-Rovira A, Zutis K, Hubschman JP, Trucco E (2011) Improving vessel segmentation in ultra-wide field-of-view retinal fluorescein angiograms. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE 2011:2614–2617

  73. Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807

    Google Scholar 

  74. Ding L, Kuriyan A, Ramchandran R, Sharma G (2017) Multi-scale morphological analysis for retinal vessel detection in wide-field fluorescein angiography. In: IEEE Western New York image and signal processing workshop (WNYISPW). IEEE 2017:1–5

  75. Tan N-M, Xu Y, Goh WB, Liu J (2015) Robust multi-scale superpixel classification for optic cup localization. Comput Med Imaging Graph 40:182–193

    Google Scholar 

  76. Sarathi MP, Dutta MK, Singh A, Travieso CM (2016) Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed Signal Process Control 25:108–117

    Google Scholar 

  77. Mittapalli PS, Kande GB (2016) Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control 24:34–46

    Google Scholar 

  78. Gour N, Khanna P (2020) Automated glaucoma detection using gist and pyramid histogram of oriented gradients (phog) descriptors. Pattern Recogn Lett 137:3–11

    Google Scholar 

  79. Guo L, Yang J-J, Peng L, Li J, Liang Q (2015) A computer-aided healthcare system for cataract classification and grading based on fundus image analysis. Comput Industr 69:72–80

    Google Scholar 

  80. Acharya UR, Mookiah MRK, Koh JE, Tan JH, Bhandary SV, Rao AK, Hagiwara Y, Chua CK, Laude A (2017) Automated diabetic macular edema (dme) grading system using dwt, dct features and maculopathy index. Comput Biol Med 84:59–68

    Google Scholar 

  81. Agurto C, Murray V, Barriga E, Murillo S, Pattichis M, Davis H, Russell S, Abràmoff M, Soliz P (2010) Multiscale am-fm methods for diabetic retinopathy lesion detection. IEEE Trans Med Imaging 29(2):502–512

    Google Scholar 

  82. Murakami T, Ogawa K (2018) Speckle noise reduction of optical coherence tomography images with a wavelet transform. In: IEEE 14th international colloquium on signal processing and its applications (CSPA). IEEE 2018:31–34

  83. Li M, Idoughi R, Choudhury B, Heidrich W (2017) Statistical model for oct image denoising. Biomed Optic Express 8(9):3903–3917

    Google Scholar 

  84. Chong B, Zhu Y-K (2013) Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified bm3d filter. Optic Commun 291:461–469

    Google Scholar 

  85. Xu J, Ou H, Sun C, Chui P-C, Yang VX, Lam EY, Wong KK (2013) Wavelet domain compounding for speckle reduction in optical coherence tomography. J Biomed Optic 18(9):096002

    Google Scholar 

  86. Du Y, Liu G, Feng G, Chen Z (2014) Speckle reduction in optical coherence tomography images based on wave atoms. J Biomed Optic 19(5):056009

    Google Scholar 

  87. Xia S, Huang Y, Peng S, Wu Y, Tan X (2016) Adaptive anisotropic diffusion for noise reduction of phase images in fourier domain doppler optical coherence tomography. Biomed Optic Express 7(8):2912–2926

    Google Scholar 

  88. Hussain MA, Bhuiyan A, Luu CD, Theodore Smith R, Guymer RH, Ishikawa H, Schuman JS, Ramamohanarao K (2018) Classification of healthy and diseased retina using sd-oct imaging and random forest algorithm. PloS One 13(6):e0198281

    Google Scholar 

  89. Lemaître G, Rastgoo M, Massich J, Cheung CY, Wong TY, Lamoureux E, Milea D, Mériaudeau F, Sidibé D (2016) Classification of sd-oct volumes using local binary patterns: experimental validation for dme detection. J Ophthalmol 2016

  90. Venhuizen FG, van Ginneken B, Bloemen B, van Grinsven MJ, Philipsen R, Hoyng C, Theelen T, Sánchez CI (2015) Automated age-related macular degeneration classification in oct using unsupervised feature learning. In: Medical imaging 2015: computer-aided diagnosis, Vol 9414, International Society for Optics and Photonics, p 94141I

  91. Bresnick J (2018) What is deep learning and how will it change healthcare?, Health IT Analytics 30

  92. Moccia S, De Momi E, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics. Comput Methods Program Biomed 158:71–91

    Google Scholar 

  93. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

    Google Scholar 

  94. Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118

    Google Scholar 

  95. Yan Z, Yang X, Cheng K-T (2018) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 65(9):1912–1923

    Google Scholar 

  96. Maninis K-K, Pont-Tuset J, Arbeláez P, Van Gool L (2016) Deep retinal image understanding. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 140–148

  97. Akram F, Singh VK, Rashwan HA, Abdel-Nasser M, Sarker M, Kamal M, Pandey N, Puig D (2019) Adversarial learning with multiscale features and kernel factorization for retinal blood vessel segmentation, arXiv preprint arXiv:1907.02742

  98. Zhao H, Li H, Maurer-Stroh S, Guo Y, Deng Q, Cheng L (2018) Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Trans Med Imaging 38(1):46–56

    Google Scholar 

  99. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37(7):1597–1605

    Google Scholar 

  100. Gu Z, Liu P, Zhou K, Jiang Y, Mao H, Cheng J, Liu J (2018) Deepdisc: optic disc segmentation based on atrous convolution and spatial pyramid pooling. In: Computational pathology and ophthalmic medical image analysis, Springer, pp 253–260

  101. Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X (2018) Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging 37(11):2493–2501

    Google Scholar 

  102. Al-Bander B, Al-Nuaimy W, Williams BM, Zheng Y (2018) Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed Signal Process Control 40:91–101

    Google Scholar 

  103. Araújo T, Aresta G, Galdran A, Costa P, Mendonça AM, Campilho A (2018) Uolo-automatic object detection and segmentation in biomedical images. Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp. 165–173

  104. Huang Y, Zhong Z, Yuan J, Tang X (2020) Efficient and robust optic disc detection and fovea localization using region proposal network and cascaded network. Biomed Signal Process Control 60:101939

    Google Scholar 

  105. Graham B (2015) Kaggle diabetic retinopathy detection competition report, University of Warwick

  106. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22):2402–2410

    Google Scholar 

  107. Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, Peng L, Webster DR (2018) Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125(8):1264–1272

    Google Scholar 

  108. Gangwar AK, Ravi V (2020) Diabetic retinopathy detection using transfer learning and deep learning. Evolution in computational intelligence, Springer, pp 679–689

  109. Qummar S, Khan FG, Shah S, Khan A, Shamshirband S, Rehman ZU, Khan IA, Jadoon W (2019) A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7:150530–150539

    Google Scholar 

  110. Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A (2019) Cnns for automatic glaucoma assessment using fundus images: an extensive validation. Biomed Eng Online 18(1):29

    Google Scholar 

  111. Joshi RC, Dutta MK, Sikora P, Kiac M (2020) Efficient convolutional neural network based optic disc analysis using digital fundus images. In: 2020 43rd international conference on telecommunications and signal processing (TSP), IEEE, pp 533–536

  112. Li L, Xu M, Wang X, Jiang L, Liu H (2019) Attention based glaucoma detection: a large-scale database and cnn model. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 10571–10580

  113. Bajwa MN, Malik MI, Siddiqui SA, Dengel A, Shafait F, Neumeier W, Ahmed S (2019) Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med Inform Decis Making 19(1):136

    Google Scholar 

  114. Islam MT, Imran SA, Arefeen A, Hasan M, Shahnaz C (2019) Source and camera independent ophthalmic disease recognition from fundus image using neural network. In: 2019 IEEE international conference on signal processing, information, communication and systems (SPICSCON), IEEE, pp 59–63

  115. Jordi CC, Joan MNDR, Carles VR (2020) Ocular disease intelligent recognition through deep learning architectures. In: Universitat Oberta de Catalunya

  116. Li C, Ye J, He J, Wang S, Qiao Y, Gu L (2020) Dense correlation network for automated multi-label ocular disease detection with paired color fundus photographs. In: IEEE 17th international symposium on biomedical imaging (ISBI). IEEE 2020:1–4

  117. Jin K, Pan X, You K, Wu J, Liu Z, Cao J, Lou L, Xu Y, Su Z, Yao K et al (2020) Automatic detection of non-perfusion areas in diabetic macular edema from fundus fluorescein angiography for decision making using deep learning. Sci Rep 10(1):1–7

    Google Scholar 

  118. Chen Z, Zeng Z, Shen H, Zheng X, Dai P, Ouyang P (2020) Dn-gan: denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images. Biomed Signal Process Control 55:101632

    Google Scholar 

  119. Shi F, Cai N, Gu Y, Hu D, Ma Y, Chen Y, Chen X (2019) Despecnet: a cnn-based method for speckle reduction in retinal optical coherence tomography images. Phys Med Biol 64(17):175010

    Google Scholar 

  120. Qiu B, Huang Z, Liu X, Meng X, You Y, Liu G, Yang K, Maier A, Ren Q, Lu Y (2020) Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function. Biomed Optic Express 11(2):817–830

    Google Scholar 

  121. Gour N, Khanna P (2019) Speckle denoising in optical coherence tomography images using residual deep convolutional neural network. Multimed Tools Appl 1–17

  122. Mishra Z, Ganegoda A, Selicha J, Wang Z, Sadda SR, Hu Z (2020) Automated retinal layer segmentation using graph-based algorithm incorporating deep-learning-derived information. Sci Rep 10(1):1–8

    Google Scholar 

  123. Pekala M, Joshi N, Liu TA, Bressler NM, DeBuc DC, Burlina P (2019) Deep learning based retinal oct segmentation. Comput Biol Med 114:103445

    Google Scholar 

  124. Ngo L, Cha J, Han J-H (2019) Deep neural network regression for automated retinal layer segmentation in optical coherence tomography images. IEEE Trans Image Process 29:303–312

    MathSciNet  MATH  Google Scholar 

  125. Li F, Chen H, Liu Z, Zhang X, Wu Z (2019) Fully automated detection of retinal disorders by image-based deep learning. Graefe’s Arch Clin Exp Ophthalmol 257(3):495–505

    Google Scholar 

  126. Huang L, He X, Fang L, Rabbani H, Chen X (2019) Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network. IEEE Signal Process Lett 26(7):1026–1030

    Google Scholar 

  127. Rasti R, Mehridehnavi A, Rabbani H, Hajizadeh F (2018) Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier. J Biomed Optic 23(3):035005

    Google Scholar 

  128. Rong Y, Xiang D, Zhu W, Yu K, Shi F, Fan Z, Chen X (2018) Surrogate-assisted retinal oct image classification based on convolutional neural networks. IEEE J Biomed Health Inform 23(1):253–263

    Google Scholar 

  129. Tsuji T, Hirose Y, Fujimori K, Hirose T, Oyama A, Saikawa Y, Mimura T, Shiraishi K, Kobayashi T, Mizota A et al (2020) Classification of optical coherence tomography images using a capsule network. BMC Ophthalmol 20(1):1–9

    Google Scholar 

  130. Odaibo SG, Odaibo DG (2021) Systems and methods using weighted-ensemble supervised-learning for automatic detection of ophthalmic disease from images, uS Patent 10,963,737 (Mar. 30)

  131. (2020) Netra.ai—a comprehensive ophthalmology platform. https://leben.ai/. Accessed 18 May 2021

  132. Seo E, Jaccard N, Trikha S, Pasquale LR, Song BJ (2018) Automated evaluation of optic disc images for manifest glaucoma detection using a deep-learning, neural network-based algorithm. Invest Ophthalmol Visual Sci 59(9):2080

    Google Scholar 

  133. Sosale B, Sosale AR, Murthy H, Sengupta S, Naveenam M (2020) Medios-an offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Indian J Ophthalmol 68(2):391

    Google Scholar 

  134. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC (2018) Pivotal trial of an autonomous ai-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Med 1(1):1–8

    Google Scholar 

  135. Bellemo V, Lim G, Rim TH, Tan GS, Cheung CY, Sadda S, He M-G, Tufail A, Lee ML, Hsu W et al (2019) Artificial intelligence screening for diabetic retinopathy: the real-world emerging application. Curr Diabet Rep 19(9):1–12

    Google Scholar 

  136. Nguyen HV, Tan GSW, Tapp RJ, Mital S, Ting DSW, Wong HT, Tan CS, Laude A, Tai ES, Tan NC et al (2016) Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in singapore. Ophthalmology 123(12):2571–2580

    Google Scholar 

  137. Peto T, Tadros C (2012) Screening for diabetic retinopathy and diabetic macular edema in the united kingdom. Curr Diabet Rep 12(4):338–345

    Google Scholar 

  138. Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, Prescott GJ, Sharp PF, Olson JA (2007) The efficacy of automated disease/no disease grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol 91(11):1512–1517

    Google Scholar 

  139. Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87

    Google Scholar 

  140. Bonaldi L, Menti E, Ballerini L, Ruggeri A, Trucco E (2016) Automatic generation of synthetic retinal fundus images: vascular network. MIUA, pp 54–60

  141. Costa P, Galdran A, Meyer MI, Niemeijer M, Abràmoff M, Mendonça AM, Campilho A (2017) End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging 37(3):781–791

    Google Scholar 

  142. Raman R, Srinivasan S, Virmani S, Sivaprasad S, Rao C, Rajalakshmi R (2019) Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye 33(1):97–109

    Google Scholar 

  143. Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama 318(22):2211–2223

    Google Scholar 

  144. Lee J-G, Jun S, Cho Y-W, Lee H, Kim GB, Seo JB, Kim N (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584

    Google Scholar 

  145. Yang HHS, Rim TH, Tham YC, Yoo TK, Lee G, Kim Y, Wong TY, Cheng CY (2020) Deep learning system differentiates ethnicities from fundus photographs of a multi-ethnic asian population. Invest Ophthalmol Visual Sci 61(7):5248

    Google Scholar 

  146. Bhatia KK, Graham MS, Terry L, Wood A, Tranos P, Trikha S, Jaccard N (2020) Disease classification of macular optical coherence tomography scans using deep learning software: validation on independent, multicenter data. Retina 40(8):1549–1557

    Google Scholar 

  147. Buda M, Maki A, Mazurowski MA (2018) A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw 106:249–259

    Google Scholar 

  148. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. Advances in neural information processing systems, pp 2234–2242

  149. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626

  150. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2921–2929

  151. Roy AG, Conjeti S, Karri SPK, Sheet D, Katouzian A, Wachinger C, Navab N (2017) Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Optic Express 8(8):3627–3642

    Google Scholar 

  152. Ding L, Kuriyan A, Ramchandran R, Sharma G (2018) Retinal vessel detection in wide-field fluorescein angiography with deep neural networks: A novel training data generation approach. In: 2018 25th IEEE international conference on image processing (ICIP), IEEE, pp 356–360

  153. Goswami P, Mukherjee A, Sarkar B, Yang L (2021) Multi-agent-based smart power management for remote health monitoring. Neural Comput Appl 1–10

  154. Singh A, Anand A, Lv Z, Ko H, Mohan A (2021) A survey on healthcare data: a security perspective. ACM Trans Multimed Comput Commun Appl 17(2s):1–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritee Khanna.

Ethics declarations

Conflict of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gour, N., Tanveer, M. & Khanna, P. Challenges for ocular disease identification in the era of artificial intelligence. Neural Comput & Applic 35, 22887–22909 (2023). https://doi.org/10.1007/s00521-021-06770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06770-5

Keywords

Navigation