Skip to main content
Log in

Evolutionary-based neuro-fuzzy modelling of combustion enthalpy of municipal solid waste

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The viability of thermal waste-to-energy (WTE) plants and its optimal performance have informed intelligent predictive modelling of its significant variables critical to optimal energy recovery and plant operational planning using machine learning approach. However, the optimality of hyper-parameters is significant to accurate modelling of combustion enthalpy of waste in neuro-fuzzy models. In this study, the significant effect of hyper-parameters tuning of different clustering techniques, vis-à-vis fuzzy c-means (FCM), subtractive clustering (SC) and grid partitioning (GP), on the performance of the ANFIS model in its standalone and hybridized form was investigated. The ANFIS model was optimized with two evolutionary algorithms, namely particle swarm optimization (PSO) and genetic algorithm (GA), for predicting the lower heating value (LHV) of waste using the city of Johannesburg as a case study. The optimal model for LHV prediction was selected based on minimum error criteria after testing the models’ performance using relevant statistical metrics like root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute deviation (MAD), relative mean bias error (rMBE) and coefficient of variation (RCoV). The result revealed a better performance of the hybridized ANFIS model than the standalone ANFIS model. Also, a significant variation in all models’ performance at different clustering technique was noted. However, all GP-clustered models gave the most accurate prediction than others. The most accurate model was obtained using a GP-clustered PSO-ANFIS model with triangular input membership function (tri-MF) giving RMSE, MAD, MAPE, rMBE and RCoV values of 0.139, 0.064, 2.536, 0.071 and 0.181, respectively. This study established the significance of municipality-based LHV prediction model to enhance the efficiency of thermal WTE plants and the robustness of evolutionary-based neuro-fuzzy model for heating value prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Cheng J, Shi F, Yi J, Fu H (2020) Analysis of the factors that affect the production of municipal solid waste in China. J Clean Prod 259:120808. https://doi.org/10.1016/j.jclepro.2020.120808

    Article  Google Scholar 

  2. Hoornweg D, Bhada-Tata P (2012) What a waste: A Global Review of Solid Waste Management. Urban papers no. 15. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/17388

  3. Moharir RV, Gautam P, Kumar S (2019) Waste treatment processes/technologies for energy generation. In: Current developments in biotechnology and bioengineering. Elsevier. https://doi.org/10.1016/B978-0-444-64083-3.00004-X

  4. Adeleke O, Akinlabi SA, Jen TC, Dunmade I (2021) Sustainable utilization of energy from waste: a review of potentials and challenges of Waste-to-energy in South Africa. Int J Green Energy. https://doi.org/10.1080/15435075.2021.1914629

    Article  Google Scholar 

  5. Iyamu HO, Anda M, Ho G (2020) A review of municipal solid waste management in the BRIC and high-income countries: A thematic framework for low-income countries. Habitat Int 95:102097. https://doi.org/10.1016/j.habitatint.2019.102097

    Article  Google Scholar 

  6. Khan MD, Khan N, Sultana S, Joshi R, Ahmed S, Yu E, Scott K, Ahmad A, Khan MZ (2017) Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem 57:141–158. https://doi.org/10.1016/j.procbio.2017.04.001

    Article  Google Scholar 

  7. Awasthi MK, Sarsaiya S, Chen H, Wang Q, Wang M, Awasthi SK, Li J, Liu T, Pandey A, Zhang Z (2019) Global status of waste-to-energy technology. In Current developments in biotechnology and bioengineering. Elsevier, Amsterdam https://doi.org/10.1016/b978-0-444-64083-3.00003-8

  8. Dadak A, Aghbashlo M, Tabatabaei M, Younesi H (2016) Exergy-based sustainability assessment of continuous photobiological hydrogen production using anaerobic bacterium Rhodospirillum rubrum. J Clean Prod 139:157–166. https://doi.org/10.1016/j.jclepro.2016.08.020

    Article  Google Scholar 

  9. Gutierrez-Gomez AC, Gallego AG, Palacios-Bereche R, de Campos T, Leite J, Pereira Neto AM (2021) Energy recovery potential from Brazilian municipal solid waste via combustion process based on its thermochemical characterization. J Clean Prod 293:126145. https://doi.org/10.1016/j.jclepro.2021.126145

    Article  Google Scholar 

  10. Ludlow L et al (2021) Organic waste to energy: Resource potential and barriers to uptake in Chile. Sustain Prod Consum 28:1522–1537. https://doi.org/10.1016/j.spc.2021.08.017

    Article  Google Scholar 

  11. Mostakim K, Arefin MA, Islam MT, Shifullah KM, Islam AM (2021) Harnessing energy from the waste produced in Bangladesh: evaluating potential technologies. Heliyon 7(10):e08221. https://doi.org/10.1016/j.heliyon.2021.e08221

    Article  Google Scholar 

  12. Sagastume Gutiérrez A, Cabello Eras JJ, Hens L, Vandecasteele C (2020) The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. J Clean Prod 269:1223. https://doi.org/10.1016/j.jclepro.2020.122317

    Article  Google Scholar 

  13. Dalmo FC, Simão NM, Lima HQ, Medina Jimenez AC, Nebra S, Martins G, Palacios-Bereche R, Henriqu P (2019) Energy recovery overview of municipal solid waste in São Paulo State, Brazil. J Clean Prod 212:461–474. https://doi.org/10.1016/j.jclepro.2018.12.016

    Article  Google Scholar 

  14. Anshar M, Negeri P, Pandang U, Nasir F, Universiti A, Anshar M (2015) The energy potential of municipal solid waste for power generation in Indonesia. J Mekanikal 37:42–54

    Google Scholar 

  15. Ibikunle RA, Titiladunayo IF, Akinnuli BO, Dahunsi SO, Olayanju TMA (2019) Estimation of power generation from municipal solid wastes: a case Study of Ilorin metropolis, Nigeria. Energy Rep 5:126–135. https://doi.org/10.1016/j.egyr.2019.01.005

    Article  Google Scholar 

  16. Bagheri M, Esfilar R, Sina M, Kennedy CA (2019) A comparative data mining approach for the prediction of energy recovery potential from various municipal solid waste. Renew Sus Energy Rev 116:109423. https://doi.org/10.1016/j.rser.2019.109423

    Article  Google Scholar 

  17. Birgen C, Magnanelli E, Carlsson P, Skreiberg Ø, Mosby J, Becidan M (2021) Machine learning based modelling for lower heating value prediction of municipal solid waste. Fuel 283:118906

    Article  Google Scholar 

  18. Mateus MM, Bordado JM, Galhano dos Santos R (2021) Simplified multiple linear regression models for the estimation of heating values of refuse derived fuels. Fuel 294:120541

    Article  Google Scholar 

  19. Drudi KCR, Drudi R, Martins G, Antonio GC, Leite JTC (2019) Statistical model for heating value of municipal solid waste in Brazil based on gravimetric composition. Waste Manag 87:782–790. https://doi.org/10.1016/j.wasman.2019.03.012

    Article  Google Scholar 

  20. Khuriati A, Nur M, Istadi I (2015) Modeling the heating value of municipal solid waste based on ultimate analysis using stepwise multiple linear regression. J Eng Appl Sci 12(9):1–8

    Google Scholar 

  21. Amen R, Hameed J, Albashar G, Kamran HW, Hassan M, Shah U, Khaliq M, Zaman U, Mukhtar A, Saqib S, IqbalCh S, Ibrahim M, Ullah S, Al-Sehemi AG, Ahmad SR, Klemeš JJ, Bokhari A, Asif S (2021) Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: a sustainable case study. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.125575

    Article  Google Scholar 

  22. Ibikunle RA, Lukman AF, Titiladunayo IF, Akeju EA, Dahunsi SO (2020) Modeling and robust prediction of high heating values of municipal solid waste based on ultimate analysis. Energy Sources Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2020.1841343

    Article  Google Scholar 

  23. Qian X, Lee S, Soto AM, Chen G (2018) Regression model to predict the higher heating value of poultry waste from proximate analysis. Resources 7(3):39. https://doi.org/10.3390/resources7030039

    Article  Google Scholar 

  24. Alrashed AA, Gharibdousti MS, Goodarzi M, de Oliveira LR, Safaei MR, BandarraFilho EP (2018) Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN. Int J Heat Mass Transf 125:920–932. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.142

    Article  Google Scholar 

  25. Adeleke O, Akinlabi SA, Jen TC, Dunmade I (2021) Application of artificial neural networks for predicting the physical composition of municipal solid waste: an assessment of the impact of seasonal variation. Waste Manag Res 39(8):1058–1068. https://doi.org/10.1177/0734242X21991642

    Article  Google Scholar 

  26. Khosravi R, Rabiei S, Khaki M, Safaei MR, Goodarzi M (2021) Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks. J Therm Anal Calorim 145(4):1949–1967. https://doi.org/10.1007/s10973-021-10828-w

    Article  Google Scholar 

  27. Moradikazerouni A, Hajizadeh A, Safaei MR, Afrand M, Yarmand H, Zulkifli NW (2019) Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Phys A Stat Mech Appl 521:138–145. https://doi.org/10.1016/j.physa.2019.01.051

    Article  Google Scholar 

  28. Safaei MR, Hajizadeh A, Afrand M, Qi C, Yarmand H, Zulkifli NW (2019) Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys A Stat Mech Appl 519:209–216. https://doi.org/10.1016/j.physa.2018.12.010

    Article  Google Scholar 

  29. Wang D, Tang YT, He J, Yang F, Robinson D (2021) Generalized models to predict the lower heating value (LHV) of municipal solid waste (MSW). Energy 216:119279. https://doi.org/10.1016/j.energy.2020.119279

    Article  Google Scholar 

  30. Adeleke O, Akinlabi SA, Jen TC, Dunmade I (2020) Prediction of the heating value of municipal solid waste: a case study of the city of Johannesburg. Int J Ambient Energy. https://doi.org/10.1080/01430750.2020.1861088

    Article  Google Scholar 

  31. Abidoye LK, Mahdi FM (2014) Novel linear and nonlinear equations for the Higher Heating Values of Municipal Solid Wastes and the implications of carbon to energy ratios. J Energy Technol Policy 4(5):14–27

    Google Scholar 

  32. Shu HY, Lu HC, Fan HJ, Chang MC, Chen JC (2006) Prediction for energy content of taiwan municipal solid waste using multilayer perceptron neural networks. J Air Waste Manag Assoc 56(6):852–858. https://doi.org/10.1080/10473289.2006.10464497

    Article  Google Scholar 

  33. Olatunji OO, Akinlabi S, Madushele N, Adedeji PA, Felix I (2019) Multilayer perceptron artificial neural network for the prediction of heating value of municipal solid waste. AIMS Energy 7(6):944–956. https://doi.org/10.3934/energy.2019.6.944

    Article  Google Scholar 

  34. Sarkheyli A, Mohd A (2015) Robust optimization of ANFIS based on a new modified GA. Neurocomputing 166(357–366):2015. https://doi.org/10.1016/j.neucom.2015.03.060

    Article  Google Scholar 

  35. Azad A, Manoochehri M, Kashi H, Farzin S, Karami H (2019) Comparative evaluation of intelligent algorithms to improve adaptive neuro- fuzzy inference system performance in precipitation modelling. J Hydrol 571:214–224. https://doi.org/10.1016/j.jhydrol.2019.01.062

    Article  Google Scholar 

  36. Adedeji PA, Akinlabi S, Madushele N, Olatunji OO (2020) Wind turbine power output very short-term forecast: a comparative study of data clustering techniques in a PSO-ANFIS model. J Clean Prod 254:120135. https://doi.org/10.1016/j.jclepro.2020.120135

    Article  Google Scholar 

  37. Kumar R, Hynes NRJ (2019) Prediction and optimization of surface roughness in thermal drilling using integrated ANFIS and GA approach. Int J Eng Sci Technol 23(1):30–41. https://doi.org/10.1016/j.jestch.2019.04.011

    Article  Google Scholar 

  38. Deshwal S, Td A, Kumar IF, Chhabra D (2020) Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP J Manuf Sci Technol 31:189–199. https://doi.org/10.1016/j.cirpj.2020.05.009

    Article  Google Scholar 

  39. Yadav HK, Pal Y, Tripathi MM (2019) A novel GA-ANFIS hybrid model for short-term solar PV power forecasting in Indian electricity market. J Optim Inf Sci 2667:377–395. https://doi.org/10.1080/02522667.2019.1580880

    Article  Google Scholar 

  40. Keybondorian E, Soulgani BS, Bemani A (2018) Application of ANFIS-GA algorithm for forecasting oil flocculated asphaltene weight percentage in different operation conditions. Pet Sci Technol 36(12):862–868. https://doi.org/10.1080/10916466.2018.1447960

    Article  Google Scholar 

  41. Zhang Z, Peng B, Luo C, Tai C (2021) ANFIS-GA system for three-dimensional pulse image of normal and string-like pulse in Chinese medicine using an improved contour analysis method. Eur J Integr Med 42:101301. https://doi.org/10.1016/j.eujim.2021.101301

    Article  Google Scholar 

  42. Semero YK, Zheng D, Zhang J (2021) A PSO-ANFIS based hybrid approach for short term PV power prediction in microgrids. Electr Power Comp Syst 46(1):95–103. https://doi.org/10.1080/15325008.2018.1433733

    Article  Google Scholar 

  43. Catalão JPS, Pousinho HMI, Mendes VMF (2011) Hybrid Wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal. IEEE Trans Sustain Energy 2(1):50–59. https://doi.org/10.1109/TSTE.2010.2076359

    Article  Google Scholar 

  44. Zanganeh M (2020) Improvement of the ANFIS-based wave predictor models by the Particle Swarm Optimization. J Ocean Eng Sci 5:84–99. https://doi.org/10.1016/j.joes.2019.09.002

    Article  Google Scholar 

  45. Sajadi A, Dashti A, Raji M, Zarei A, Mohammadi AH (2020) Estimation of cetane numbers of biodiesel and diesel oils using regression and PSO-ANFIS models. Renew Energy 158:465–473. https://doi.org/10.1016/j.renene.2020.04.146

    Article  Google Scholar 

  46. Olatunji O, Akinlabi S, Madushele N, Adedeji PA (2019) Estimation of Municipal Solid Waste (MSW) combustion enthalpy for energy recovery. EAI Endorsed Trans Energy Web 19(23):1–9. https://doi.org/10.4108/eai.11-6-2019.159119

    Article  Google Scholar 

  47. Baghban A, Ebadi T (2019) GA-ANFIS modeling of higher heating value of wastes: application to fuel upgrading. Energy Sources Part A Recover Util Environ Eff 41(1):7–13. https://doi.org/10.1080/15567036.2017.1344746

    Article  Google Scholar 

  48. Mbuli (2015) Alternative waste treatment technology project Ingwenyama Resort, Mpumulanga Province. A waste report of the city of Johannesburg waste management. City of Johannesburg

  49. Fattahi H (2016) Adaptive neuro fuzzy inference system based on fuzzy c–means clustering algorithm, a technique for estimation of tbm penetration rate. Iran Univ Sci Tech 6(2):159–171

    Google Scholar 

  50. Mustapha M, Mustafa MW, Khalid SN, Abubakar I, Abdilahi AM (2016) Correlation and wavelet-based short-term load forecasting using anfis. Indian J Sci Technol 9(46):1–8. https://doi.org/10.17485/ijst/2016/v9i46/107141

    Article  Google Scholar 

  51. Güldal V, Tongal H (2010) Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in eġirdir lake level forecasting. Water Resour Manag 24(1):105–128. https://doi.org/10.1007/s11269-009-9439-9

    Article  Google Scholar 

  52. Yeom CU, Kwak KC (2018) Performance comparison of ANFIS models by input space partitioning methods. Symmetry 10:700. https://doi.org/10.3390/sym10120700

    Article  Google Scholar 

  53. Wang X, Wang Z, Sheng M, Li Q, Sheng W (2021) An adaptive and opposite K-means operation based memetic algorithm for data clustering. Neurocomputing 437:131–142. https://doi.org/10.1016/j.neucom.2021.01.056

    Article  Google Scholar 

  54. Wei M, Bai B, Sung AH, Liu Q, Wang J, Cather ME (2007) Predicting injection profiles using ANFIS. Inf Sci (NY) 177(20):4445–4461. https://doi.org/10.1016/j.ins.2007.03.021

    Article  Google Scholar 

  55. Abonyi J, Andersen H, Nagy L, Szeifert F (1999) Inverse fuzzy-process-model based direct adaptive control. Math Comput Simul 51(1–2):119–132. https://doi.org/10.1016/s0378-4754(99)00142-1

    Article  MathSciNet  Google Scholar 

  56. Keshavarzi A, Sarmadian F, Shiri J, Iqbal M, Tirado-corbalá R, Omran EE (2017) Application of ANFIS-based subtractive clustering algorithm in soil Cation Exchange Capacity estimation using soil and remotely sensed data. Measurement 95:173–180. https://doi.org/10.1016/j.measurement.2016.10.010

    Article  Google Scholar 

  57. Sanikhani H, Kisi O, Nikpour MR, Dinpashoh Y (2012) Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques. Water Resour Manag 26(15):4347–4365. https://doi.org/10.1007/s11269-012-0148-4

    Article  Google Scholar 

  58. Benmouiza K, Cheknane A (2019) Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting. Theor Appl Climatol 137(1–2):31–43. https://doi.org/10.1007/s00704-018-2576-4

    Article  Google Scholar 

  59. Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput J 27:158–168. https://doi.org/10.1016/j.asoc.2014.11.012

    Article  Google Scholar 

  60. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43. https://doi.org/10.1109/MHS.1995.494215

  61. Arora A, Arabameri A, Pandey M, Siddiqui MA, Shukla UK, Tien D, Narayan V, Bhardwaj A (2021) Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain. Sci Total Environ 750:141565. https://doi.org/10.1016/j.scitotenv.2020.141565

    Article  Google Scholar 

  62. Enayatollahi H, Fussey P, Nguyen BK (2020) Modelling evaporator in organic Rankine cycle using hybrid GD-LSE ANFIS and PSO ANFIS techniques. Therm Sci Eng Prog 19:100570. https://doi.org/10.1016/j.tsep.2020.100570

    Article  Google Scholar 

  63. Kumar R, Jesudoss NR (2020) Prediction and optimization of surface roughness in thermal drilling using integrated ANFIS and GA approach. Eng Sci Technol Int J 23(1):30–41. https://doi.org/10.1016/j.jestch.2019.04.011

    Article  Google Scholar 

  64. Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling. Intl J Hydrogen Energy 42(22):15211–15225. https://doi.org/10.1016/j.ijhydene.2017.04.044

    Article  Google Scholar 

  65. Adedeji PA, Akinlabi S, Madushele N, Olatunji OO (2021) Hybrid neurofuzzy investigation of short-term variability of wind resource in site suitability analysis: a case study in South Africa. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06001-x

    Article  Google Scholar 

  66. Adeleke O, Akinlabi SA, Jen TC, Dunmade I (2020) Prediction of municipal solid waste generation: an clustering techniques and parameters on ANFIS model performance. Environ Technol. https://doi.org/10.1080/09593330.2020.1845819

    Article  Google Scholar 

  67. Pan WT (2009) Forecasting classification of operating performance of enterprises by zscore combining ANFIS and genetic algorithm. Neural Comput Appl 18(8):1005–1011. https://doi.org/10.1007/s00521-009-0243-5

    Article  Google Scholar 

  68. Karami A, Roshani GH, Salehizadeh A, Nazemi E (2017) The fuzzy logic application in volume fractions prediction of the annular three-phase flows. J Nondestruct Eval 36(2):1–9. https://doi.org/10.1007/s10921-017-0415-7

    Article  Google Scholar 

  69. Adil O, Ali A, Ali M, Ali AY, Sumait BS (2015) Comparison between the effects of different types of membership functions on fuzzy logic controller performance. Int J Emerg Eng Res Technol 3:76

    Google Scholar 

  70. Alfarraj O, Alkhalaf S (2017) Optimized automatic generation of fuzzy rules for nonlinear system based on subtractive clustering algorithm for medical image segmentation. J Med Imaging Heal Inform 7(2):500–507

    Article  Google Scholar 

  71. Wiharto W, Suryani E (2019) The analysis effect of cluster numbers on fuzzy c-means algorithm for blood vessel segmentation of retinal fundus image. In: International conference on information, communication and computing technology, ICOIACT 2019, pp 106–110. https://doi.org/10.1109/ICOIACT46704.2019.8938583

  72. Zhou K, Yang S (2020) Effect of cluster size distribution on clustering: a comparative study of k-means and fuzzy c-means clustering. Pattern Anal Appl 23(1):455–466. https://doi.org/10.1007/s10044-019-00783-6

    Article  MathSciNet  Google Scholar 

  73. Hossain M et al (2018) Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability. PLoS ONE 13(4):e0193772

    Article  Google Scholar 

  74. Xu A, Chang H, Xu Y, Li R, Li X, Zhao Y (2021) Applying artificial neural networks ( ANNs ) to solve solid waste-related issues: a critical review. Waste Manag 124:385–402. https://doi.org/10.1016/j.wasman.2021.02.029

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the management of the Department of Mechanical Engineering Science, University of Johannesburg, South Africa, for providing workspace and research facilities for this research.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

O.A. involved in conceptualization, methodology, software, validation, formal analysis, writing—original draft, writing—review & editing. S.A. took part in conceptualization, methodology, software, validation, formal analysis, writing—original draft, writing—review & editing. T.-C.J. involved in conceptualization, methodology, software, validation, formal analysis, writing—original draft, writing—review & editing. P.A.A. took part in conceptualization, methodology, software, validation, formal analysis, writing—original draft, writing—review & editing. I.D. took part in conceptualization, methodology, software, validation, formal analysis, writing—original draft, writing—review & editing.

Corresponding author

Correspondence to Oluwatobi Adeleke.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeleke, O., Akinlabi, S., Jen, TC. et al. Evolutionary-based neuro-fuzzy modelling of combustion enthalpy of municipal solid waste. Neural Comput & Applic 34, 7419–7436 (2022). https://doi.org/10.1007/s00521-021-06870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06870-2

Keywords