Skip to main content
Log in

A comparative study of fourteen deep learning networks for multi skin lesion classification (MSLC) on unbalanced data

  • S.I. : TAM-LHR
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Among various types of skin diseases, skin cancer is the deadliest form of the disease. This paper classifies seven types of skin diseases: Actinic keratosis and intraepithelial carcinoma, Basal cell carcinoma, Benign keratosis, Dermatofibroma, Melanoma, Melanocytic type, and Vascular lesions. The primary objective of this paper is to evaluate the performance of these deep learning networks on skin lesion images. The lesion classification is implemented through transfer learning on fourteen deep learning networks: AlexNet, GoogleNet, ResNet50, VGG16, VGG19, ResNet101, InceptionV3, InceptionResNetV2, SqueezeNet, DenseNet201, ResNet18, MobileNetV2, ShuffleNet and NasNetMobile. The dataset used for these experiments are from ISIC 2018 of about 10,154 images. The results show that DenseNet201 performs best with 0.825 accuracy and improves skin lesion classification under multiple diseases. The proposed work shows the various parameters, including the accuracy of all fourteen deep learning networks, which helped build an efficient automated classification model for multiple skin lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

Data Availability

ISIC database.

References

  1. Hameed N, Shabut AM, Ghosh MK, Hossain MA (2020) Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Syst with Appl 141:112961. https://doi.org/10.1016/j.eswa.2019.112961

    Article  Google Scholar 

  2. Al-Masni MA, Kim DH, Kim TS (2020) Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Programs Biomed 190:105351. https://doi.org/10.1016/j.cmpb.2020.105351

    Article  Google Scholar 

  3. Nasiri S, Helsper J, Jung M, Fathi M (2020) DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images. BMC bioinform 21:1–3. https://doi.org/10.1186/s12859-020-3351-y

    Article  Google Scholar 

  4. Mukherjee S, Adhikari A, Roy M (2019) Malignant melanoma classification using cross-platform dataset with deep learning CNN architecture. In: Bhattacharyya S, Pal SK, Pan I, Das A (eds) Recent trends in signal and image processing 2019. Springer, Singapore, pp 31–41

    Chapter  Google Scholar 

  5. Seeja RD, Suresh A (2019) Deep learning based skin lesion segmentation and classification of melanoma using support vector machine (SVM). Asian Pac J of Cancer Prev APJCP 20(5):1555

    Article  Google Scholar 

  6. Chung YM, Hu CS, Lawson A, Smyth C (2019) Toporesnet: A hybrid deep learning architecture and its application to skin lesion classification. arXiv preprint, arXiv:1905.08607

  7. Al-Antari MA, Al-Masni MA, Kim TS (2020) Deep learning computer-aided diagnosis for breast lesion in digital mammogram. In: Lee G, Fujita H (eds) Deep Learning in Medical Image Analysis. Springer, Cham, pp 59–72

    Chapter  Google Scholar 

  8. Ali R, Hardie RC, De Silva MS, Kebede TM (2019) Skin lesion segmentation and classification for ISIC 2018 by combining deep CNN and handcrafted features. arXiv preprint, arXiv:1908.05730

  9. Al-Obeidat F, Rocha Á, Akram M et al (2021) (CDRGI)-Cancer detection through relevant genes identification. Neural Comput Applic. https://doi.org/10.1007/s00521-021-05739-8

    Article  Google Scholar 

  10. Yilmaz E, Trocan M (2020) Benign and malignant skin lesion classification comparison for three deep-learning architectures. In: Thanh Nguyen N, Jearanaitanakij K, Selamat A, Trawiński B, Chittayasothorn S (eds) Asian Conf on Intell Inf and Database Syst. Springer, Cham, pp 514–524

    Google Scholar 

  11. Saba T, Khan MA, Rehman A, Marie-Sainte SL (2019) Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J Med Syst 43:289. https://doi.org/10.1007/s10916-019-1413-3

    Article  Google Scholar 

  12. Amin J, Sharif A, Gul N, Anjum MA, Nisar MW, Azam F, Bukhari SA (2020) Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recognit Lett 131:63–70. https://doi.org/10.1016/j.patrec.2019.11.042

    Article  Google Scholar 

  13. Delibasis K, Georgakopoulos SV, Tasoulis SK, Maglogiannis I, Plagianakos VP (2020) On image prefiltering for skin lesion characterization utilizing deep transfer learning. In: Iliadis L, Parvanov Angelov P, Jayne C, Pimenidis E (eds) International conf on engineering appl of neural networks. Springer, Cham, pp 377–388

    Google Scholar 

  14. Ballester P, Araujo R (2016) On the performance of GoogLeNet and AlexNet applied to sketches. In :Proceedings of the AAAI Conference on Artificial Intelligence: 30(1)

  15. Chen M, Chen W, Chen W, Cai L, Chai G (2020) Skin cancer classification with deep convolutional neural networks. J of Med Imaging and Health Info 10(7):1707–1713. https://doi.org/10.1166/jmihi.2020.3078

    Article  Google Scholar 

  16. Gessert N, Nielsen M, Shaikh M, Werner R, Schlaefer A (2020) Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data. MethodsX 7:100864. https://doi.org/10.1016/j.mex.2020.100864

    Article  Google Scholar 

  17. Carcagnì P, Leo M, Cuna A, Mazzeo PL, Spagnolo P, Celeste G, Distante C (2019) Classification of skin lesions by combining multilevel learnings in a DenseNet architecture. In: Ricci E, Bulò SR, Snoek C, Lanz O, Messelodi S, Sebe N (eds) International Conf on Image Analysis and Processing. Springer, Cham, pp 335–344. https://doi.org/10.1007/978-3-030-30642-7_30

    Chapter  Google Scholar 

  18. Chen EZ, Dong X, Li X, Jiang H, Rong R, Wu J (2019) Lesion attributes segmentation for melanoma detection with multi-task u-net. In: Proceedings of the 2019 IEEE 16th international symp on biomedical imaging (ISBI 2019), pp 485–488, IEEE. https://doi.org/10.1109/ISBI.2019.8759483

  19. Yang J, Sun X, Liang J, Rosin PL (2018) Clinical skin lesion diagnosis using representations inspired by dermatologist criteria. In: Proceedings of the IEEE conf on computer vision and pattern recognition, pp 1258–1266, IEEE.

  20. Nazi ZA, Abir TA (2020) Automatic skin lesion segmentation and melanoma detection: Transfer learning approach with u-net and dcnn-svm. In: Uddin MS, Bansal JC (eds) Proc of international joint conf on computational intelligence. Springer, Singapore, pp 371–381. https://doi.org/10.1007/978-981-13-7564-4_32

    Chapter  Google Scholar 

  21. Rastgoo M, Lemaître G, Morel O, Massich J, Garcia R, Meriaudeau F, Marzani F, Sidibé D (2016) Classification of melanoma lesions using sparse coded features and random forests. Med Imaging 2016: Comput-Aided Diagn 9785:97850

    Google Scholar 

  22. Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M, Kittler H (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:1902.03368

  23. Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5(1):1–9. https://doi.org/10.1038/sdata.2018.161

    Article  Google Scholar 

  24. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105

    Google Scholar 

  25. Negrete PDM, Iano Y, Monteiro ACB, França RP, Gomes G, de Oliveira D, Pajuelo (2021) Classification of dermoscopy skin images with the application of deep learning techniques. In: Iano Y, Arthur R, Saotome O, Kemper G, Monteiro ACB (eds) Proc of the 5th Brazilian technology symp. Springer, Cham, pp 73–81. https://doi.org/10.1007/978-3-030-57566-3_7

    Chapter  Google Scholar 

  26. Balazs H (2018) Skin lesion classification with ensembles of deep convolutional neural networks. J of Biomed Inf 86:25–32. https://doi.org/10.1016/j.jbi.2018.08.006

    Article  Google Scholar 

  27. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conf on computer vision and pattern recognition, pp 1–9

  28. Quang NH (2017) Automatic skin lesion analysis towards melanoma detection. In: proceedings of the 2017 21st Asia Pacific symposium on intelligent and evolutionary systems (IES), pp 106–111. https://doi.org/10.1109/iesys.2017.8233570

  29. Kwasigroch A, Mikołajczyk A, Grochowski M (2017) Deep neural networks approach to skin lesions classification—A comparative analysis. In: proceedings of the 2017 22nd int conf on methods and models in automation and robotics (MMAR), pp 1069–1074. https://doi.org/10.1109/mmar.2017.8046978

  30. Demir A, Yilmaz F, Kose O (2019) Early detection of skin cancer using deep learning architectures: Resnet-101 and inception-v3. In 2019 Medical Technologies Congress (TIPTEKNO), pp 1–4, IEEE. https://doi.org/10.1109/tiptekno47231.2019.8972045

  31. Shahin AH, Kamal A, Elattar MA (2018) Deep ensemble learning for skin lesion classification from dermoscopic images. In: proceedings of the 2018 9th cairo international biomedical engineering conference (CIBEC), pp. 150–153. https://doi.org/10.1109/cibec.2018.8641815

  32. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conf on Artificial Intelligence:31(1)

  33. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360

  34. Al-Masni MA, Kim DH, Kim TS (2020) Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Programs Biomed 190:105351. https://doi.org/10.1016/j.cmpb.2020.105351

    Article  Google Scholar 

  35. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017). Densely connected convolutional networks. In: Proceedings of the IEEE conf on computer vision and pattern recognition, pp 4700–4708

  36. Czum JM (2020) Dive into deep learning. J of the American College of Radiology 17(5):637–638. https://doi.org/10.1016/j.jacr.2020.02.005

    Article  Google Scholar 

  37. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861

  38. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE conf on computer vision and pattern recognition, pp 6848–6856

  39. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conf on computer vision and pattern recognition, pp 8697–8710

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Ginni Arora: Conceptualization, Methodology, Software, Data curation, Validation, Writing- Original draft preparation. Ashwani Kumar Dubey: Conceptualization, Methodology, Supervision, Reviewing and Editing. Zainul Abdin Jaffery: Conceptualization, Supervision, Reviewing and Editing. Alvaro Rocha: Reviewing and Editing.

Corresponding author

Correspondence to Ashwani Kumar Dubey.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Consent to participate

I consent to participate.

Consent for publication

I consent for publication.

Code availability

Custom code.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, G., Dubey, A.K., Jaffery, Z.A. et al. A comparative study of fourteen deep learning networks for multi skin lesion classification (MSLC) on unbalanced data. Neural Comput & Applic 35, 7989–8015 (2023). https://doi.org/10.1007/s00521-022-06922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-06922-1

Keywords

Navigation