Skip to main content

Advertisement

Log in

A robust crow search algorithm-based power system stabilizer for the SMIB system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Power system stabilizers (PSSs) are extensively used in generator units to enhance the transient stability of the power system. Hence, optimal tuning and placement of the parameters of PSS are crucial for the efficiency of the stabilizer. Researchers have been proposed many methods for optimizing such parameters. In this paper, the Crow search algorithm (CSA), which is based on the intelligence of crows, was employed in a single-machine infinite-bus (SMIB) system to determine the optimum parameters of the PSS. Modeling and simulation of the SMIB and designing of PSS were made by MATLAB/Simulink. PSSs are designed to minimize low-frequency oscillations such as power angle, rotor speed, and field current deviation following a large disturbance. Our objective in this study is the minimization of the rotor speed deviation. The results of the simulations proved the effectiveness and robustness of the optimization process compared to other metaheuristic algorithms such as particle swarm optimization (PSO) and genetic algorithm (GA). When compared to the performance attained by the GA-based and PSO-based PSS controller designs, the simulations show that the CSA-based PSS delivers a far better dynamic response when the system is disrupted. The CSA-based PSS settles 48.1% faster than the PSO-based PSS and 55.7% faster than the GA-based PSS. CSA has just 2 parameters to adjust, making it much easier to implement than other methods. These parameters for PSO and GA are 4 and 6. When CSA-based PSS is used in the SMIB system, overshoot and low-frequency oscillations are also significantly reduced compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu J, Nahrir MH, Pierre DA (2001) A fuzzy logic-based self-tuning power system stabilizer optimized with a genetic algorithm. Electr Power Syst Res 60(2):77–83. https://doi.org/10.1016/S0378-7796(01)00170-5

    Article  Google Scholar 

  2. Abido MA, Abdel-Magid YL (1997) Tuning of a fuzzy logic power system stabilizer using genetic algorithms. In: Proc IEEE Conf Evol Comput ICEC, pp. 595–599, https://doi.org/10.1109/icec.1997.592380

  3. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control. McGraw-Hill Education

    Google Scholar 

  4. Anderson PM, Fouad AAA (1977) Power system control and stability. Iowa State University Press

    Google Scholar 

  5. Fereidouni AR, Vahidi B, Hoseini Mehr T, Tahmasbi M (2013) Improvement of low frequency oscillation damping by allocation and design of power system stabilizers in the multi-machine power system. Int J Electr Power Energy Syst 52(1):207–220. https://doi.org/10.1016/j.ijepes.2013.03.030

    Article  Google Scholar 

  6. Lee Y-C, Chi-Jui Wu (1995) Damping of power system oscillations with output feedback and strip eigenvalue assignment. IEEE Trans Power Syst 10(3):1620–1626. https://doi.org/10.1109/59.466479

    Article  Google Scholar 

  7. Da Cruz JJ, Zanetta LC (1997) Stabilizer design for multimachine power systems using mathematical programming. Int J Electr Power Energy Syst 19(8):519–523. https://doi.org/10.1016/S0142-0615(97)00023-9

    Article  Google Scholar 

  8. Zanetta LC, Da Cruz JJ (2005) An incremental approach to the coordinated tuning of power systems stabilizers using mathematical programming. IEEE Trans Power Syst 20(2):895–902. https://doi.org/10.1109/TPWRS.2005.846111

    Article  Google Scholar 

  9. Abido MA (2000) Robust design of multimachine power system stabilizers using simulated annealing. IEEE Trans Energy Convers 15(3):297–304. https://doi.org/10.1109/60.875496

    Article  Google Scholar 

  10. Hsu Y-Y, Hsu C-Y (1986) Design of a proportional-integral power system stabilizer. IEEE Trans Power Syst PWRS1(2):46–52

    Article  Google Scholar 

  11. Hsu YY, Liou K (1987) Design of self-tuning PID power system stabilizers for synchronous generators. IEEE Trans Energy Conversion EC-2(3):343–348

    Article  Google Scholar 

  12. Sil A, Gangopadhyay TK, Paul S, Maitra AK (2009) Design of robust power system stabilizer using H∞ mixed sensitivity technique. In: 2009 Int Conf Power Syst ICPS ’09, https://doi.org/10.1109/ICPWS.2009.5442746

  13. Gibbard MJ (1991) Robust design of fixed-parameter power system stabilizers over a wide range of operating conditions. IEEE Trans Power Syst 6(2):794

    Article  Google Scholar 

  14. Pierre DA (1987) A perspective on adaptive control of power systems. IEEE Trans Power Syst 2(2):387–395. https://doi.org/10.1109/TPWRS.1987.4335139

    Article  Google Scholar 

  15. Zhang Y, Chen GP, Malik OP, Hope GS (1993) An artificial neural network based adaptive power system stabilizer. IEEE Trans Energy Convers 8(1):71–77. https://doi.org/10.1109/60.207408

    Article  Google Scholar 

  16. Soliman M, Elshafei AL, Bendary F, Mansour W (2009) LMI static output-feedback design of fuzzy power system stabilizers. Expert Syst Appl 36(3):6817–6825. https://doi.org/10.1016/j.eswa.2008.08.018

    Article  Google Scholar 

  17. Mukherjee V, Ghoshal SP (2007) Intelligent particle swarm optimized fuzzy PID controller for AVR system. Electr Power Syst Res 77(12):1689–1698. https://doi.org/10.1016/j.epsr.2006.12.004

    Article  Google Scholar 

  18. Bhati PS, Gupta R (2013) Robust fuzzy logic power system stabilizer based on evolution and learning. Int J Electr Power Energy Syst 53(1):357–366. https://doi.org/10.1016/j.ijepes.2013.05.014

    Article  Google Scholar 

  19. Saoudi K, Harmas MN (2014) Enhanced design of an indirect adaptive fuzzy sliding mode power system stabilizer for multi-machine power systems. Int J Electr Power Energy Syst 54:425–431. https://doi.org/10.1016/j.ijepes.2013.07.034

    Article  Google Scholar 

  20. Ghasemi A, Shayeghi H, Alkhatib H (2013) Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm. Int J Electr Power Energy Syst 51:190–200. https://doi.org/10.1016/j.ijepes.2013.02.022

    Article  Google Scholar 

  21. Chaturvedi DK, Malik OP (2008) Neurofuzzy power system stabilizer. IEEE Trans Energy Convers 23(3):887–894. https://doi.org/10.1109/TEC.2008.918633

    Article  Google Scholar 

  22. Awadallah MA, Soliman HM (2009) A neuro-fuzzy adaptive power system stabilizer using genetic algorithms. Electr Power Components Syst 37(2):158–173. https://doi.org/10.1080/15325000802388740

    Article  Google Scholar 

  23. Radaideh SM, Nejdawi IM, Mushtaha MH (2012) Design of power system stabilizers using two level fuzzy and adaptive neuro-fuzzy inference systems. Int J Electr Power Energy Syst 35(1):47–56. https://doi.org/10.1016/j.ijepes.2011.08.022

    Article  Google Scholar 

  24. Ramirez JM, Correa RE, Hernández DC (2012) A strategy to simultaneously tune power system stabilizers. Int J Electr Power Energy Syst 43(1):818–829. https://doi.org/10.1016/j.ijepes.2012.06.025

    Article  Google Scholar 

  25. Nechadi E, Harmas MN, Hamzaoui A, Essounbouli N (2012) A new robust adaptive fuzzy sliding mode power system stabilizer. Int J Electr Power Energy Syst 42(1):1–7. https://doi.org/10.1016/j.ijepes.2012.03.032

    Article  Google Scholar 

  26. Al-Duwaish HN, Al-Hamouz ZM (2011) A neural network based adaptive sliding mode controller: application to a power system stabilizer. Energy Convers Manag 52(2):1533–1538. https://doi.org/10.1016/j.enconman.2010.06.060

    Article  Google Scholar 

  27. Abido MA (2000) Simulated annealing based approach to PSS and FACTS based stabilizer tuning. Int J Electr Power Energy Syst 22(4):247–258. https://doi.org/10.1016/S0142-0615(99)00055-1

    Article  Google Scholar 

  28. Abido MA, Abdel-Magid YL (1999) Tabu search based approach to power system stability enhancement via excitation and static phase shifter control. Electr Power Syst Res 52(2):133–143. https://doi.org/10.1016/S0378-7796(99)00013-9

    Article  Google Scholar 

  29. Abido MA (1999) Novel approach to conventional power system stabilizer design using tabu search. Int J Electr Power Energy Syst 21(6):443–454. https://doi.org/10.1016/S0142-0615(99)00004-6

    Article  Google Scholar 

  30. Abido MA, Abdel-Magid YL (1997) A genetic-based fuzzy logic power system stabilizer for multimachine power systems. Comput Cybern Simul 1:329–334. https://doi.org/10.1109/ICSMC.1997.625771

    Article  Google Scholar 

  31. Abdel-Magid YL, Abido MA (2003) Optimal multiobjective design of robust power system stabilizers using genetic algorithms. IEEE Trans Power Syst 18(3):1125–1132. https://doi.org/10.1109/TPWRS.2003.814848

    Article  Google Scholar 

  32. Ekinci S, Demiroren A (2015) PSO based PSS design for transient stability enhancement. Istanbul Univ J Electr Electron Eng 15(1):1855–1862

    Google Scholar 

  33. Labdelaoui H, Boudjema F, Boukhetala D (2016) A multiobjective tuning approach of power system stabilizers using particle swarm optimization. Turkish J Electr Eng Comput Sci 24(5):3898–3909. https://doi.org/10.3906/elk-1411-200

    Article  Google Scholar 

  34. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67. https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  35. Hasan Z, Salman K, Talaq J, El-Hawary ME (2016) Optimal tuning of power system stabilizers by biogeography based optimization method. In: 2016 IEEE Canadian conference on electrical and computer engineering (CCECE), May 2016, pp. 1–6, https://doi.org/10.1109/CCECE.2016.7726628

  36. Chitara D, Niazi KR, Swarnkar A, Gupta N (2018) Cuckoo search optimization algorithm for designing of a multimachine power system stabilizer. IEEE Trans Ind App. https://doi.org/10.1109/TIA.2018.2811725

    Article  Google Scholar 

  37. Ekinci S, Izci D, Zeynelgil HL, Orenc S (2020) An application of slime mould algorithm for optimizing parameters of power system stabilizer. https://doi.org/10.1109/ISMSIT50672.2020.9254597

  38. Sabo A, Abdul Wahab NI, Othman ML, Mohd Jaffar MZA, Beiranvand H (2020) Optimal design of power system stabilizer for multimachine power system using farmland fertility algorithm. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12657

    Article  Google Scholar 

  39. Alshammari BM, Guesmi T (2020) New chaotic sunflower optimization algorithm for optimal tuning of power system stabilizers. J Electr Eng Technol 15(5):1985–1997. https://doi.org/10.1007/s42835-020-00470-1

    Article  Google Scholar 

  40. Mijbas AF, Hasan BAA, Salah HA (2020) Optimal stabilizer PID parameters tuned by chaotic particle swarm optimization for damping low frequency oscillations (LFO) for Single machine infinite bus system (SMIB). J Electr Eng Technol. https://doi.org/10.1007/s42835-020-00442-5

    Article  Google Scholar 

  41. Butti D, Mangipudi SK, Rayapudi SR (2020) An improved whale optimization algorithm for the design of multi-machine power system stabilizer. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12314

    Article  Google Scholar 

  42. Izci D (2021) A novel improved atom search optimization algorithm for designing power system stabilizer. Evol Intell. https://doi.org/10.1007/s12065-021-00615-9

    Article  Google Scholar 

  43. Hekimoğlu B (2020) Robust fractional order PID stabilizer design for multi-machine power system using grasshopper optimization algorithm. J Fac Eng Archit Gazi Univ. https://doi.org/10.17341/gazimmfd.449685

    Article  Google Scholar 

  44. Abualigah L, Diabat A (2021) Advances in sine cosine algorithm: a comprehensive survey. Artif Intell Rev. https://doi.org/10.1007/s10462-020-09909-3

    Article  Google Scholar 

  45. Devarapalli R, Bhattacharyya B (2020) A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer parameter tuning in a multimachine power system. Optim Control Appl Methods. https://doi.org/10.1002/oca.2591

    Article  MATH  Google Scholar 

  46. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MAA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  47. Razmjooy N, Razmjooy S, Vahedi Z, Estrela VV, de Oliveira GG (2021) A new design for robust control of power system stabilizer based on moth search algorithm. In: Lecture notes in electrical engineering

  48. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  49. Chow JH, Sanchez-Gasca JJ (2019) Power system modeling, computation, and control. Wiley

    Book  Google Scholar 

  50. Pal B, Chaudhuri B (2006) Robust control in power systems. Springer, US

    Google Scholar 

  51. Sauer PW, Pai MA (1998) Power system dynamics and stability. Prentice Hall

    Google Scholar 

  52. Surjan BS, Garg R (2012) Power system stabilizer controller design for smib stability study. Int J Eng Adv Technol 1:209–214

    Google Scholar 

  53. Demello FP, Concordia C (1969) Concepts of synchronous machine stability as affected by excitation control. IEEE Trans power Appar Syst 88(4):316–329

    Article  Google Scholar 

  54. Shayeghi H, Shayanfar HA, Jalilzadeh S, Safari A (2010) Multi-machine power system stabilizers design using chaotic optimization algorithm. Energy Convers Manag 51(7):1572–1580

    Article  Google Scholar 

  55. Safari A, Shayeghi H, Shayanfar HA (2010) Optimization based control coordination of STATCOM and PSS output feedback damping controller using PSO technique. Int J Tech Phys Probl Eng 2:4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdullah Yokus.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokus, H., Ozturk, A. A robust crow search algorithm-based power system stabilizer for the SMIB system. Neural Comput & Applic 34, 9161–9173 (2022). https://doi.org/10.1007/s00521-022-06943-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-06943-w

Keywords

Navigation