Skip to main content

Advertisement

Log in

The prediction of dynamic energy behavior of a Brazilian disk containing nonpersistent joints subjected to drop hammer test utilizing heuristic approaches

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Crack development initiated from nonpersistent joints in rock mass plays a key role in the instability of rock structures. In particular, the dynamic behavior of nonpersistent discontinuities can result in the coalescence and failure of rock structures. The effect and contribution of such joint parameters on rock structures’ failure under impact loading have not been thoroughly investigated by researchers. In this paper, 68 concrete Brazilian disks, manufactured to include several nonpersistent joints and joint sets, are subjected to impact loading to explore the impact of joint continuity factor, joint spacing, bridge angle, and loading direction on the required dynamic energy for crack initiation (DECI) and coalescence (DECC). Artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and its combination with particle swarm optimization (PSO) and genetic algorithm (GA) have been developed to predict the energy indexes. The performance of the models was evaluated using statistical indicators. The results show that intelligent methods can predict both energy indexes and that their outputs are consistent with laboratory results. The R-squared index for the test data of the ANN, ANFIS, and ANFIS-PSO/GA models to predict DECI parameters is 0.97, 0.96, 0.96, and 0.97, respectively, and for DECC is 0.98, 0.96, 0.96, and 0.93, respectively. The ANN have the best performance for the test data based on all statistical indexes. In addition, multiple parametric sensitivity analysis shows that both the joint continuity and joint spacing have the most significant effect while bridge angle and loading direction have the minimal effect on the energy indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

d :

Joint spacing (cm)

γ :

Bridge angle (°)

β :

Loading direction with respect to joint angle (°)

L j :

Joint length (cm)

L j :

Rock bridge length (cm)

k :

Joint continuity factor \(\left( {k = \frac{{L_{j} }}{{L_{j} + L_{r} }}} \right)\)

V 0 :

Initial velocity

\(f_{h}\) :

Objective function

\(\delta_{h}\) :

Independent relative importance of each parameter

\({\varvec{\gamma}}\) :

Sum of independent relative importance of each parameter

DECI:

Dynamic energy for crack initiation (kN mm)

DECC:

Dynamic energy for crack coalescence (kN mm)

MPSA:

Multiple parametric sensitivity analysis

DOE:

Design of experiments

ANN:

Artificial neural network

ANFIS:

Adaptive neuro-fuzzy inference system

PSO:

Particle swarm optimization

GA:

Genetic algorithm

References

  1. Zhang C, Cao P, Cao Y, Li J (2013) Using finite element software to simulation fracture behavior of three-point bending beam with initial crack. J Softw 8:1145–1150. https://doi.org/10.4304/jsw.8.5.1145-1150

    Article  Google Scholar 

  2. Yang X-X, Jing H-W, Tang C-A, Yang S-Q (2017) Effect of parallel joint interaction on the mechanical behavior of jointed rock mass models. Int J Rock Mech Min Sci 92:40–53. https://doi.org/10.1016/j.ijrmms.2016.12.010

    Article  Google Scholar 

  3. Fan X, Li K, Lai H et al (2018) Internal stress distribution and cracking around flaws and openings of rock block under uniaxial compression: a particle mechanics approach. Comput Geotech 102:28–38. https://doi.org/10.1016/j.compgeo.2018.06.002

    Article  Google Scholar 

  4. Aziznejad S, Esmaieli K, Hadjigeorgiou J, Labrie D (2018) Responses of jointed rock masses subjected to impact loading. J Rock Mech Geotech Eng 10:624–634. https://doi.org/10.1016/j.jrmge.2017.12.006

    Article  Google Scholar 

  5. Hatheway AW (2009) The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974–2006. Environ Eng Geosci 15:47–48. https://doi.org/10.2113/gseegeosci.15.1.47

    Article  Google Scholar 

  6. Eberhardt E (2009) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Commission on testing methods. International Society for Rock Mechanics, 628 pp.,€ 25 (ISRM members),€ 30 (non-members)

  7. Asadizadeh M, Masoumi H, Roshan H, Hedayat A (2019) Coupling Taguchi and response surface methodologies for the efficient characterization of jointed rocks’ mechanical properties. Rock Mech Rock Eng 52:4807–4819. https://doi.org/10.1007/s00603-019-01853-1

    Article  Google Scholar 

  8. Asadizadeh M, Moosavi M, Hossaini MF, Masoumi H (2018) Shear strength and cracking process of non-persistent jointed rocks: an extensive experimental investigation. Rock Mech Rock Eng 51:415–428. https://doi.org/10.1007/s00603-017-1328-6

    Article  Google Scholar 

  9. Bahaaddini M, Sharrock G, Hebblewhite BK (2013) Numerical direct shear tests to model the shear behaviour of rock joints. Comput Geotech 51:101–115. https://doi.org/10.1016/j.compgeo.2013.02.003

    Article  Google Scholar 

  10. Karimi J, Asadizadeh M, Hossaini MF et al (2021) Compressive strength of flawed cylindrical specimens subjected to axial loading. Geomech Eng 1:87–99. https://doi.org/10.12989/gae2021.27.1.087

    Article  Google Scholar 

  11. Hudson J, Harrison J, Popescu M (2002) Engineering rock mechanics: an introduction to the principles. Appl Mech Rev 55:B30. https://doi.org/10.1115/1.1451165

    Article  Google Scholar 

  12. Zhang H, Elsworth D, Wan Z (2018) Failure response of composite rock-coal samples. Geomech Geophys Geo-Energy Geo-Resour 4:175–192. https://doi.org/10.1007/s40948-018-0082-x

    Article  Google Scholar 

  13. Li K, Cheng Y, Yin Z-Y et al (2020) Size effects in a transversely isotropic rock under Brazilian tests: laboratory testing. Rock Mech Rock Eng 53:2623–2642. https://doi.org/10.1007/s00603-020-02058-7

    Article  Google Scholar 

  14. Asadizadeh M, Hossaini MF, Moosavi M et al (2019) Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression. Eng Geol 260:105224. https://doi.org/10.1016/j.enggeo.2019.105224

    Article  Google Scholar 

  15. Shakeri J, Asadizadeh M, Babanouri N et al (2022) The evolution of dynamic energy during drop hammer testing of Brazilian disk with non-persistent joints: an extensive experimental investigation. Theor Appl Fract Mech 117:103162. https://doi.org/10.1016/j.tafmec.2021.103162

    Article  Google Scholar 

  16. Saksala T, Hokka M, Kuokkala VT, Mäkinen J (2013) Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite. Int J Rock Mech Min Sci 59:128–138. https://doi.org/10.1016/j.ijrmms.2012.12.018

    Article  Google Scholar 

  17. Li SH, Zhu WC, Niu LL et al (2018) Dynamic characteristics of green sandstone subjected to repetitive impact loading: phenomena and mechanisms. Rock Mech Rock Eng 51:1921–1936. https://doi.org/10.1007/s00603-018-1449-6

    Article  Google Scholar 

  18. Fakhimi A, Azhdari P, Kimberley J (2018) Physical and numerical evaluation of rock strength in Split Hopkinson Pressure Bar testing. Comput Geotech 102:1–11. https://doi.org/10.1016/j.compgeo.2018.05.009

    Article  Google Scholar 

  19. Tong LH, Yu Y, Lai SK, Lim CW (2019) Dynamic weakening of sandstone subjected to repetitive impact loading. Rock Mech Rock Eng 52:2197–2206. https://doi.org/10.1007/s00603-018-1713-9

    Article  Google Scholar 

  20. Wang Y, Lin H, Zhao Y et al (2020) Analysis of fracturing characteristics of unconfined rock plate under edge-on impact loading. Eur J Environ Civ Eng 24:2453–2468. https://doi.org/10.1080/19648189.2018.1509021

    Article  Google Scholar 

  21. Imani M, Nejati HR, Goshtasbi K (2017) Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate. Soil Dyn Earthq Eng 100:261–269. https://doi.org/10.1016/j.soildyn.2017.06.007

    Article  Google Scholar 

  22. Zhao Y, Zhao GF, Jiang Y (2013) Experimental and numerical modelling investigation on fracturing in coal under impact loads. Int J Fract 183:63–80. https://doi.org/10.1007/s10704-013-9876-6

    Article  Google Scholar 

  23. Dai F, Xu Y, Zhao T et al (2016) Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests. Int J Rock Mech Min Sci 88:49–60. https://doi.org/10.1016/j.ijrmms.2016.07.003

    Article  Google Scholar 

  24. Zhao S, Zhang Q (2019) Dynamic crack propagation and fracture behavior of pre-cracked specimens under impact loading by split hopkinson pressure bar. Adv Mater Sci Eng 2019:1–11. https://doi.org/10.1155/2019/2383861

    Article  Google Scholar 

  25. Tariq Z, Elkatatny S, Mahmoud M et al (2017) A new technique to develop rock strength correlation using artificial intelligence tools. In: Day 3 Wed, May 10, 2017. SPE, pp 1340–1353

  26. Pham BT, Nguyen MD, Bui K-TT et al (2019) A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. CATENA 173:302–311. https://doi.org/10.1016/j.catena.2018.10.004

    Article  Google Scholar 

  27. Ashrafian A, Shokri F, Taheri Amiri MJ et al (2020) Compressive strength of Foamed Cellular Lightweight Concrete simulation: new development of hybrid artificial intelligence model. Constr Build Mater 230:117048. https://doi.org/10.1016/j.conbuildmat.2019.117048

    Article  Google Scholar 

  28. Rezaei M, Asadizadeh M (2020) Predicting unconfined compressive strength of intact rock using new hybrid intelligent models. J Min Environ 11:231–246. https://doi.org/10.22044/jme.2019.8839.1774

    Article  Google Scholar 

  29. Lawal AI, Kwon S (2021) Application of artificial intelligence to rock mechanics: an overview. J Rock Mech Geotech Eng 13:248–266. https://doi.org/10.1016/j.jrmge.2020.05.010

    Article  Google Scholar 

  30. Jalal FE, Xu Y, Iqbal M et al (2021) Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP. J Environ Manag 289:112420. https://doi.org/10.1016/j.jenvman.2021.112420

    Article  Google Scholar 

  31. Ngo HTT, Pham TA, Vu HLT, Van GL (2021) Application of artificial intelligence to determined unconfined compressive strength of cement-stabilized soil in Vietnam. Appl Sci 11:1949. https://doi.org/10.3390/app11041949

    Article  Google Scholar 

  32. Asadizadeh M, Majdi A (2019) Developing new Adaptive Neuro-Fuzzy Inference Systems to predict granular soil groutability. Int J Min Geo-Eng 53:133–142. https://doi.org/10.22059/IJMGE.2018.255209.594728

    Article  Google Scholar 

  33. Qi C, Tang X (2018) Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study. Comput Ind Eng 118:112–122. https://doi.org/10.1016/j.cie.2018.02.028

    Article  Google Scholar 

  34. Shang Y, Nguyen H, Bui X-N et al (2020) A Novel Artificial Intelligence Approach To Predict Blast-Induced Ground Vibration In Open-Pit Mines Based On The Firefly Algorithm And Artificial Neural Network. Nat Resour Res 29:723–737. https://doi.org/10.1007/s11053-019-09503-7

    Article  Google Scholar 

  35. Kardani N, Zhou A, Nazem M, Shen S-L (2021) Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J Rock Mech Geotech Eng 13:188–201. https://doi.org/10.1016/j.jrmge.2020.05.011

    Article  Google Scholar 

  36. Mohammad R, Mostafa A, Abbas M, Mohammad Farouq H (2015) Prediction of representative deformation modulus of longwall panel roof rock strata using Mamdani fuzzy system. Int J Min Sci Technol 25:23–30. https://doi.org/10.1016/j.ijmst.2014.11.007

    Article  Google Scholar 

  37. Asadizadeh M, Hossaini MF (2016) Predicting rock mass deformation modulus by artificial intelligence approach based on dilatometer tests. Arab J Geosci 9:96. https://doi.org/10.1007/s12517-015-2189-5

    Article  Google Scholar 

  38. Zhang X, Nguyen H, Bui X-N et al (2020) Evaluating and predicting the stability of roadways in tunnelling and underground space using artificial neural network-based particle swarm optimization. Tunn Undergr Space Technol 103:103517. https://doi.org/10.1016/j.tust.2020.103517

    Article  Google Scholar 

  39. Feng P, Dai F, Liu Y et al (2018) Effects of strain rate on the mechanical and fracturing behaviors of rock-like specimens containing two unparallel fissures under uniaxial compression. Soil Dyn Earthq Eng 110:195–211. https://doi.org/10.1016/j.soildyn.2018.03.026

    Article  Google Scholar 

  40. Asadizadeh M, Rezaei M (2019) Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilising GEP approach. Int J Geotech Eng. https://doi.org/10.1080/19386362.2019.1596610

    Article  Google Scholar 

  41. Nguyen HQ, Ly H-B, Tran VQ et al (2020) Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression. Materials (Basel) 13:1205. https://doi.org/10.3390/ma13051205

    Article  Google Scholar 

  42. Asadizadeh M, Karimi J, Hossaini MF, Alipour A, Nowak S, Sherizadeh T (2022) The effect of central flaw on the unconfined strength of rock-like specimens: an intelligent approach. Iran J Sci Technol Trans Civil Eng. https://doi.org/10.1007/s40996-022-00825-w

    Article  Google Scholar 

  43. Brady BHG, Brown ET (2004) Rock mechanics for underground mining. Springer Netherlands, Dordrecht

    Google Scholar 

  44. Lu X, Hasanipanah M, Brindhadevi K et al (2020) ORELM: a novel machine learning approach for prediction of flyrock in mine blasting. Nat Resour Res 29:641–654. https://doi.org/10.1007/s11053-019-09532-2

    Article  Google Scholar 

  45. Nikafshan Rad H, Bakhshayeshi I, Wan Jusoh WA et al (2020) Prediction of flyrock in mine blasting: a new computational intelligence approach. Nat Resour Res 29:609–623. https://doi.org/10.1007/s11053-019-09464-x

    Article  Google Scholar 

  46. Shojaeian A, Asadizadeh M (2020) Prediction of surface tension of the binary mixtures containing ionic liquid using heuristic approaches; an input parameters investigation. J Mol Liq 298:111976. https://doi.org/10.1016/j.molliq.2019.111976

    Article  Google Scholar 

  47. Asadizadeh M, Hossaini MF, Moosavi M, Mohammadi S (2016) A laboratory study on mix design to properly resemble a jointed brittle rock. Int J Min Geo-Eng 50:201–210. https://doi.org/10.22059/ijmge.2016.59830

    Article  Google Scholar 

  48. Zhou J, Aghili N, Ghaleini EN et al (2020) A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Eng Comput 36:713–723. https://doi.org/10.1007/s00366-019-00726-z

    Article  Google Scholar 

  49. Díaz-Rodríguez P, Cancilla JC, Matute G, Torrecilla JS (2015) Viscosity estimation of binary mixtures of ionic liquids through a multi-layer perceptron model. J Ind Eng Chem 21:1350–1353. https://doi.org/10.1016/j.jiec.2014.06.005

    Article  Google Scholar 

  50. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  51. Moghaddamnia A, Ghafari Gousheh M, Piri J et al (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97. https://doi.org/10.1016/j.advwatres.2008.10.005

    Article  Google Scholar 

  52. Jahanmiri S, Asadizadeh M, Alipour A et al (2021) Predicting the contribution of mining sector to the Gross Domestic Product (GDP) Index utilizing heuristic approaches. Appl Artif Intell. https://doi.org/10.1080/08839514.2021.1997225

    Article  Google Scholar 

  53. Huang J, Asteris PG, Manafi Khajeh Pasha S et al (2020) A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm. Eng Comput. https://doi.org/10.1007/s00366-020-01207-4

    Article  Google Scholar 

  54. Hajihassani M, Jahed Armaghani D, Monjezi M et al (2015) Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environ Earth Sci 74:2799–2817. https://doi.org/10.1007/s12665-015-4274-1

    Article  Google Scholar 

  55. Victoire TAA, Jeyakumar AE (2004) Hybrid PSO–SQP for economic dispatch with valve-point effect. Electr Power Syst Res 71:51–59. https://doi.org/10.1016/j.epsr.2003.12.017

    Article  Google Scholar 

  56. Cheng G, An Y, Wang Z, Zhu K (2012) Oil well placement optimization using niche particle swarm optimization. In: 2012 Eighth international conference on computational intelligence and security. IEEE, pp 61–64

  57. Holland JH (1992) Adaptation in natural and artificial systems. The MIT Press

    Book  Google Scholar 

  58. Martin A, Gayathri V, Saranya G et al (2011) A hybrid model for bankruptcy prediction using genetic algorithm, fuzzy C-means and mars. Int J Soft Comput 2:12–24. https://doi.org/10.5121/ijsc.2011.2102

    Article  Google Scholar 

  59. Höglund H (2017) Tax payment default prediction using genetic algorithm-based variable selection. Expert Syst Appl 88:368–375. https://doi.org/10.1016/j.eswa.2017.07.027

    Article  Google Scholar 

  60. Momeni E, Nazir R, Jahed Armaghani D, Maizir H (2014) Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57:122–131. https://doi.org/10.1016/j.measurement.2014.08.007

    Article  Google Scholar 

  61. Haeri H, Sarfarazi V, Zhu Z (2016) Analysis of crack coalescence in concrete using neural networks. Strength Mater 48:850–861. https://doi.org/10.1007/s11223-017-9831-2

    Article  Google Scholar 

  62. Correa JM, Farret FA, Popov VA, Simoes MG (2005) Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells. IEEE Trans Energy Convers 20:211–218. https://doi.org/10.1109/TEC.2004.842382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Asadizadeh.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Human and animal rights

All authors declare that there are no sources of funding, financial or non-financial interests and there is no need for study-specific approval by the appropriate ethics committee for research involving humans and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeri, J., Asadizadeh, M. & Babanouri, N. The prediction of dynamic energy behavior of a Brazilian disk containing nonpersistent joints subjected to drop hammer test utilizing heuristic approaches. Neural Comput & Applic 34, 9777–9792 (2022). https://doi.org/10.1007/s00521-022-06964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-06964-5

Keywords

Navigation