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Abstract
Solar energy technologies represent a viable alternative to fossil fuels for meeting increasing global energy demands.

However, to increase the production of solar technologies in the global energy mix, the cost of production should be as

competitive as other sources. This study focuses on the implementation of machine learning for estimating the thermo-

physical properties of nanofluids for nanofluid-based solar energy technologies as this would make the synthesis of

nanofluids cost-effective. The prediction of thermal conductivity has gained a lot of research attention, whereas, the

viscosity of nanofluids has less concentration of studies. The accurate prediction of the viscosity of hybrid nanofluids is

important in estimating the heat transfer performance of nanofluids as regards their pump power requirements and

convective heat transfer coefficient in several applications. The rigor of experimentations of hybrid nanofluids has

necessitated the need for developing efficient and robust machine learning models for accurately estimating the viscosity of

hybrid nanofluids for solar applications. Several studies were aimed at developing a predictive model for the viscosity of

nanofluids; however, these models are limited to specific types of nanofluids. This study is aimed at developing a robust

machine learning algorithm for predicting the viscosity of several hybrid nanofluids from reliable experimental data (700

datasets) culled from literature. This study implements a novel optimizable Gaussian process regression (O-GPR), which

have not been previously used in this area, and compares the result with other commonly used machine learning algorithms

like, Boosted tree regression (BTR), Artificial neural network (ANN), support vector regression (SVR), to accurately

predict the viscosity of a wide range of Newtonian-based hybrid nanofluid. The input parameters used in training the

machine learning models were temperature (T), volume fraction (VF), the acentric factor of the base fluid (ACF),

nanoparticle size (NS), and nanoparticle density (ND). The prediction performance of the machine learning algorithms was

tested using statistical metrics and was compared with theoretical models. The O-GPR model showed superior predictive

performance with an R2 of 0.999998 and an MSE of 0.0002552. The study conclusively states that the high accuracy

prediction of thermophysical properties of nanofluid using robust machine learning models makes the design of nanofluid-

based solar energy technologies more cost-effective.
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1 Introduction

The science of nanoparticle dispersions into base fluids has

the potentials to revolutionize various engineering appli-

cations. This is due to the difference in the thermophysical

property behavior of nanofluids as compared to conven-

tional fluids. In recent times, the thermal conductivity and

viscosity of nanofluids have been of interest to researchers

in the field of nanoscience. The viscosity of nanofluids

affects both the thermal and lubricative applications of

nanofluids. The practical use of nanofluids in thermal

management systems is focused on a trade-off between

their high thermal conductivity and low viscosity, which is

influenced by nanoparticle loadings, size and shape, fluid

form, and temperature [1].
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The viscosity of nanofluids is known to have a signifi-

cant impact on solar energy applications [2], as it directly

impacts the pressure drop and pump work of the system

[3]. The accurate knowledge of the viscosity of nanofluids

informs better decisions for their applications in solar

energy technologies. A study by Asadi et al. [4] reported

that for solar applications, the nanofluid studied was not

reasonable for applications at a temperature of 55 �C, and a
volume concentration of 0.125%, as it resulted in the

highest pressure drop and pumping power. In another study

by Sarafraz et al. [5], it was shown that despite the

improvement in the efficiency of the PV/T system, there

was a net negative of pressure drop and pumping power at

a volume concentration of 0.3wt%. The viscosity parame-

ter is also used in estimating the Reynold number, which is

useful for heat and flow characteristics [6], as shown in

Eq. 1. Furthermore, viscosity affects heat transfer

enhancement of nanofluids from forced convection and

natural convection and occurs in several dimensionless

numbers and coefficients such as Reynolds number, Ray-

leigh number, Prandtl number, Brinkman number, and

Colburn j factor used in thermal and fluids sciences [7].

The deviations observed between predictive models and

experiments are likely because the models proposed do not

account for all known factors that affect the viscosity of

nanofluids. These factors include the base fluid viscosity,

nanoparticle shape, rate of aggregation, nanoparticle vol-

ume concentration, particle mixture ratio, etc. Each of

these factors exhibits different relationships with the vis-

cosity of nanofluids. For example, many studies have

reported that the viscosity of nanofluids decreases with the

rise of fluid temperature [7–14]. In recent years, the

attention of researchers has shifted from conventional

nanofluids to hybrid nanofluids due to their superior ther-

mophysical properties [15]. In a study by Giwa et al. [16],

experimental analysis was done to investigate the effects of

base fluid, temperature, and concentration on Al2O3–Fe2O3

hybrid nanofluid. Their study showed that the viscosity of

the hybrid nanofluid was enhanced by 3.23–43.64%. The

effects of particle concentration and temperature on hybrid

ZnO–MWCNTs were investigated by Marjan et al. [17].

Their study also agreed with the consensus that the vis-

cosity of nanofluids increases with an increase in particle

loading, and decreases with an increase in temperature.

Despite the accuracy of these experimental studies in

analyzing the viscosity of hybrid nanofluids and the effects

of other different parameters on them, these experiments

pose the challenge of time and cost. Many of the solution

proffered by researchers in predicting the viscosity of

nanofluids has been based on theoretical computations and

soft-computing methods. A theoretical model for estimat-

ing the viscosity of nanofluids with low volume fraction

was propounded by Einstein [18]. Other studies [19, 20]

have presented traditional correlation models for estimat-

ing the viscosity of nanofluids. These theoretical models

have been proven to underestimate the viscosity of

nanofluids due to the models not incorporating several

parameters that affect the rheological behaviors of the

nanofluids [21]. In the recent past, machine learning and

data mining tools have been used extensively to predict the

relative viscosity of different hybrid nanofluids under

varying experimental conditions. The machine learning

tools that have been used to predict the relative viscosity of

nanofluids includes artificial neural network (ANN) [22],

ANFIS-GA [23], and support vector regression (SVR)

[24, 25]. More recently, general machine learning models

have been developed for predicting nanofluid viscosity.

These models were developed using the data mining pro-

cess from a wide range of different experimental studies on

nanofluid synthesis. A study by Alrashed et al. [26]

developed using ANFIS, and ANN models for estimating

the viscosity of carbon-based nanofluids. Their study used

129 experimental data for optimal prediction using the

ANN model. Similarly, a study by Mehrdad et al. [27]

developed ANN model with 24 different ANN architec-

tures for predicting hybrid non-Newtonian nanofluids of

iron and copper in a base fluid mixture of water and

ethylene glycol. Their study showed that the Bayesian

regularization (BR) method gave a better performance of

viscosity estimation. Furthermore, their study concluded

that increasing the hidden neurons of the ANN model

slightly increased the model performance. A study by

Hossein et al. [28] compared several machine learning

models for estimating the dynamic viscosity of CuO/water

nanofluid. Their study which developed machine learning

methods like MPR, MARS, ANN-MLP, GMDH, and M5-

tree based on input parameters of showed that temperature,

concentration, and size of nanostructures, showed that

ANN-MLP gave the optimum prediction accuracy. A study

by Amin et al. [17] used a novel approach of GMDH type

of artificial neural network in predicting the viscosity of

Fe3O4 nanoparticles. Their result showed an RMSE value

of 0.0018 [29–43].

So far, there have been several research articles that

apply different intelligent methods for predicting the vis-

cosity of nanofluids. However, previous papers focus

mainly on specific hybrid nanofluids. Also, several studies

on viscosity prediction do not utilize the nanofluid density

as a parameter, which affects the accuracy of the model

[44]. The objective of this study is to develop a robust

model capable of predicting the relative dynamic viscosity

of multiple Newtonian hybrid nanofluids synthesized using

different base fluids. To achieve this, over five hundred

data points were collected from different experimental

studies. These data points were used to train and test dif-

ferent intelligent prediction algorithms. The primary input
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parameters used were temperature, volume fraction, mix-

ture ratio, particle size, and the acentric factor of the base

fluid, which are known to affect the viscosity of hybrid

nanofluids for solar energy applications. It is important to

emphasize that the mixture ratio has been neglected by

previous researchers when developing machine learning

algorithms for estimating the relative viscosity of

nanofluids. Mixture ratio is the ratio of individual

nanoparticle concentration in the total mix of the hybrid

nanofluid. Experimental studies [45–47] have shown that to

retrieve optimum thermophysical behaviors of hybrid

nanofluids, with different nanoparticle types, an ideal

mixture ratio should be known. The effect of mixture ratio

on thermophysical properties of hybrid nanofluids was first

explained by Hamid et al. [45]. In their study, it was shown

that the 1:1 mixture ratio of TiO2-SiO2 hybrid nanofluid

gave the highest relative viscosity. A contrary viscosity

behavior was shown in a study by Wole-Osho et al. [21]. In

their study, the least viscosity was measured for the 1:1

Al2O3-ZnO mixture ratio, while the 2:1 gave the maximum

viscosity. The varying results of the mixture ratio effects

on viscosity show that it is a significant factor for their

accurate estimation.

The machine learning algorithms used in this study are

Optimizable Gaussian process regression (O-GPR), Boos-

ted tree regression (BTR), Artificial Neural Network

(ANN) [48], and Support vector regression (SVR), and

their performance is compared with other classical corre-

lations using statistical indices. The choice of the machine

learning algorithms is based on the accurate estimation of

thermophysical properties in the literature. A study by

Mehdi et al. [49] reported accurate results with Gaussian

process regression for estimating the specific heat capacity

of nanofluids. Similarly, ANN and SVR models have been

shown to acutely estimate the thermal conductivity of

nanofluids [50]. Similarly, a study by Bernani et al. [51]

showed that boosted tree regression (BTR) gave an accu-

rate prediction of the heat capacity of nanofluids. The

general framework of the prediction is shown in Fig. 1.

It is of worthy note that the utilization of machine

learning algorithms has also been developed in the litera-

ture to explain the behavior of nanofluids for heat transfer

purposes. A study by Huawei et al. [52] developed an

optimizable ANN model with multi-objective optimization

of GA Pareto optimal front, for estimating the behavior of a

non-Newtonian nanofluid composed of Fe3O4 nanoparti-

cles dispersed in liquid paraffin. Their study optimized the

viscosity of the nanofluid for maximizing the heat transfer

coefficient and minimizing the pressure drop. Their study

also concluded that the type of base fluid used influences

the thermal and hydrodynamic properties of the thermo-

physical property like the viscosity. This study concen-

trates on the thermal utilization of the proposed machine

learning model because the emphasis on the accurate

experimental procedure for hybrid nanofluid synthesis can

be resolved using improved computational tools, rather

than classical models.

2 Methodology

In this study, an intelligent approach to predict the relative

viscosity (also referred to as dynamic viscosity ratio,
lnf
lbf

� �
)

of different hybrid nanofluids is presented. The relative

viscosity is a dimensionless quantity to express the ratio

of the viscosity of a solution (nanofluid) containing a

solute to the viscosity of the pure solvent (base fluids). The

use of machine learning and deep learning algorithm for

this prediction task is considered. In this section, the

development of the Optimizable Gaussian Process regres-

sion (O-GPR), Boosted tree regression (BTR), ANN, and

SVR models are justified and the parameters used for the

model implementation are presented. First, the models are

explained briefly, before the discourse of how they are

applied in predicting the viscosity of hybrid nanofluids is

made.

2.1 Artificial neural network (ANN)

In recent years, the use of ANN models for nonlinear

system prediction has gained more research validation due

to some advantages like its low cost, high precision, and

speed over other mathematical models. ANN was devel-

oped to mirror the performance of the human neural net-

works (brain) [53]. Typically, ANN algorithms exist as an

organized layer that is comprised of interconnected input

nodes, output nodes, and hidden layers [54]. It has been

widely applied for various purposes such as control sys-

tems [55], pattern recognition/data processing [12], and

image processing [56]. It has also been used for intelligent

prediction of the thermal and chemical properties of dif-

ferent novel hybrid nanofluids [57–61]. While the model

architectures show the connection between the neurons and

the layers, the weight and biases on these connections can

only be determined by the learning algorithm [62]. Fig-

ure 2 highlights the general process flowchart for the ANN

models.

Specifically, the ANN models used for hybrid nanofluid

viscosity prediction in this study consist of one or two

hidden layers. The input parameters also known as input

layers are listed in Table 1 and include temperature (oC),

volume fraction, particle size (nm), mixture ratio, the

acentric factor of based fluid, and density (g/m3). The

number of training, testing, and validation data set is also

shown in Table 1. These parameters are used to train the
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model to predict the relative viscosity (which is the output

layer) for different hybrid nanofluids as shown in Fig. 3. A

feed-forward backpropagation multilayer perceptron has

been developed in this study [62]. Although the Leven-

berg–Marquardt (LM) training algorithm has been the most

preferable algorithm in recent literature [62–64], four dif-

ferent learning algorithms are compared in this study to

determine the most suitable model. These include Leven-

berg–Marquardt (LM), Bayesian Regularization (BR),

Gradient Descent with Momentum (GDM), and Scaled

Conjugate Gradient (SCG). The mathematical representa-

tion of the ANN model is presented in Eq. (1).

y xð Þ ¼ L
XN
j¼1

wj pð Þ:xj pð Þ þ c

 !
ð1Þ

where Lð:Þ is the hidden transfer function, y xð Þ represents
the predicted relative viscosity, wj pð Þ is the connection of

the neurons in the input layer, c represents the neuronal

bias, and xj pð Þ is the input variable. In this study, the

transfer function of the ANN hidden layer is considered as

a tangent sigmoid as presented in Eq. (2).

f xð Þ ¼ 1

1þ expð�xÞ ð2Þ

2.2 Support vector regression (SVR)

SVR is a supervised machine learning algorithm that was

developed based on statistical learning theory [65]. Unlike

linear or simple regression where the aim is to minimize

error rate, SVR is used to fit error within a certain

threshold. It is developed on the elements of SVM,

whereby the data points about a hyperplane are distinctly

segregated with support vectors that are the closest points

to the generated hyperplane in n-dimensional feature space

[66]. This model is also a popular choice for curve fitting

and prediction of linear/nonlinear regression types [67]. An

outstanding feature of SVR is its applicability to different

disciplines and its convergence speed. In existing works of

literature, SVR has been used in engineering science [76],

biomedical [77], and social science [78]-related researches.

Specifically, it has been used for Covid-19 cases prediction

[66], CO2 sequestration study [68], solar irradiance pre-

diction [79], hybrid nanofluid conductivity prediction [32],

and other regression tasks. SVR models differ based on the

regularization term used for the structural complexity and

the specific choice of loss function used in measuring the

empirical risk [80]. In this study, the developed SVR is

used to predict the relative viscosity of hybrid nanofluids

and the general equation for this model is presented in

Eq. (3), where b is the intercept at X = 0, and w is the

weight [66].

y ¼ wX þ b ð3Þ

2.3 Optimized Gaussian process regression

The process of formulating probabilistic regression from a

training data set of D ¼ xi; yiji ¼ 1; . . .::nf g of n pairs of

vectorial inputs xi and noisy outputs yi, involves compu-

tation of the predictive distribution of the functional values

Fig. 1 Framework of viscosity prediction for solar energy application using data-driven models
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f � or the noisy y� at the test location x�. Assuming that the

noise is additive, independent, or Gaussian, such that the

latent function f(x) and observed noisy targets y are related,

the relationship is expressed as [69]

yi ¼ f xið Þ þ ei; where ei:�@ 0; r2noise
� �

ð4Þ

where the variance of the noise is represented as the r2noise
Gaussian process regression (GPR) utilize the Bayesian

method which assumes a priori function values that

behaves based on [81]:

p f jx1; x2; . . .. . .xnð Þ ¼ @ 0;Kð Þ ð5Þ

where the f 1; f 2; . . .. . .f n½ �T is a vector of latent function

values f i ¼ f xið Þ and K is a covariance matrix. The GPR

function resolves the latent function values f i as random

values, indexed by the corresponding input. Considering

Fig. 2 ANN processing

flowchart

Table 1 Parameter ranges of the variables and data sets used in the

prediction model development [48, 50, 74]

Parameters Data

Temperature (�C) 5–80

Volume concentration 0–3

Particle size (nm) 4–40 nm

Mixture ratio 0.1–0.9

Acentric factor of base fluid 0.343–0.714

Nanoparticle density (g/cm3) 0.25–10.5

Nanofluid relative viscosity 0.815–2.676

Training and validation data 70% (490)

Testing data 30% (210)

Total data 100
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the D dataset, the input parameters arexi, and yi as the

target vector, where the values are sample points. The

process of regression involves creating a new input X�, to
achieve the predicted distribution for the corresponding

values of the observed y� based on the D dataset. The mean

function mn xð Þ defines the Gaussian processf xð Þ.
mn xð Þ ¼ E f xð Þð Þ ð6Þ

The covariance k x; xið Þ function is explained using Eq. 7
k x; xi
� �

¼ E f xð Þ � m xð Þð Þ f xi
� �

� m xi
� �� �

ð7Þ

Equation 8 expresses the Gaussian process

f xð Þ�GPR m xð Þ; k x; xi
� �� �

ð8Þ

In several GPR applications, it is a common practice to

model the targets ‘y‘ to be noisy realizations of the GPR,

where the noise is usually parameterized to be zero, with

positive noise covariance values expressed as r2noise

yi ¼ f xið Þ þ e ð9Þ

where the Gaussian distribution noise is expressed as e. The
r2noise is the hyperparameter that can be optimized.

A limitation of the GPR mode is the restrictive model-

ing assumptions for complex data sets. The computational

complexity of Gaussian process regression scales poorly

with the amount of training data, which is a well-known

issue [81]. However, in this study, optimization of the

hyperparameters will be utilized in resolving this issue.

Contreras-Reyes et al. [82] implemented a nonlinear

regression analysis for mixed model by considering

additive random errors, but assumed a priori Student-t

distribution.

2.3.1 Optimizable Gaussian process regression (O-GPR)

Despite that the GPR models are non-parametric, their

hyperparameters such as length scales which significantly

affect the accuracy of their predictions can be optimized

[83]. This helps to maximize the predictive out-of-sample

performance. This optimization, just like other supervised

learning models, can be done using the gradient methods

[84]. The reason for this optimization is for marginal

likelihood [84]. In GPR models, however, the marginal

likelihood has exponential properties, therefore, maxi-

mization log-likelihood is used for the optimization, for

retrieving an analytic gradient update. Since the marginal

log-likelihood function is a strictly monotonic transfor-

mation of the marginal likelihood function, the set of

hyperparameters that maximizes the marginal log-likeli-

hood will also maximize the marginal likelihood. The

parameterized marginal log-likelihood is expressed by

(parameterized by a set of hyperparameters ðhÞ

log p yjX; hð Þ ¼ � 1

2
yT K X;Xð Þ þ r2n
� ��1

y

� 1

2
log K X;Xð Þ þ r2n
� 	

� log 2 � pið Þ

ð10Þ

In optimizing the hyperparameters of the GPR model,

the derivatives of the marginal log-likelihood are computed

with respect to h.

Fig. 3 Hybrid nanofluid relative

viscosity ANN model

architecture
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d
dh

logp yjX; hð Þ ¼ 1

2
yTK X;Xð Þ�1 dK X;Xð Þ

dh
K K;Kð Þ�1y

� 1

2
tr K X;Xð Þ�1 dK X;Xð Þ

dh


 �

d
dh

logp yjX; hð Þ ¼ 1

2
tr //T � K X;Xð Þ�1
� � dKðX;XÞ

dh


 �
;

/¼ K X;Xð Þ�1y

ð11Þ

The hyperparameters of the GPR are then updated using

the derivatives of the gradient ascent methods. The gradi-

ent updates are in the form [85]:

h iþ1ð Þ ¼ h ið Þ þ g
_

hðiÞlogp yjX; hðıÞ
� �

ð12Þ

h iþ1ð Þ ¼ h ið Þ þ g
2
tr //T �K X;Xð Þ�1

� �� � dK X;Xð Þ
dh ıð Þ


 �

ð13Þ

After optimization of the GPR hyperparameters on the

training data set (X, y), the GPR model will perform pre-

diction on the test data set X�. Furthermore, the kernel

function or the covariance function explains the similarity

of the data. Section 3.3 explains the different kernels with

which the optimization process of the GP was carried out.

The partial dependence (PDP) and individual condi-

tional expectation (ICE) are used for estimating the pre-

dictors in the GPR modeling.

2.3.2 Partial dependence plot

In a trained regression model, partial dependency repre-

sents the links between predictor variables and expected

responses. Partial dependency calculates the partial

dependence of projected responses on a selection of pre-

dictor variables.

Consider partial dependence on a subset of the entire

predictor variable set where X = x1, x2,…xm, and XS = xS1

or XS = xS1, xS2. A subset XS contains one or two vari-

ables: XS = xS1 or XS = xS1, xS2. Let XC represent the

complement of XS in X. All variables in X affect the

predicted response f(X):

f Xð Þ ¼ f XS;XC
� �

ð14Þ

The predicted values for XC defines the partial depen-

dency of expected responses on XS:

f S XS
� �

¼ EC f XS;XC
� �� �

¼
Z

f XS;XC
� �

pC XC
� �

dXC

ð15Þ

where pC XC
� �

is the marginal probability of XC, that is

pC XC
� �

� P XS;XC
� �

dXS. Assuming that each observation

is equally likely and that there is reliance between XS and

XC, as well as the interactions between XS and XC is not

strong, plot Partial Reliance estimates the partial depen-

dence as follows:

f S XS
� �

� 1

N

XN

i¼1
fXS;XC

i ð16Þ

where N is the number of observations and Xi = (Xi
S, Xi-

C) is the ith observation.

2.3.3 Individual conditional expectation (ICE)

As an extension of partial dependence, an individual con-

ditional expectation (ICE) represents the link between a

predictor variable and the projected responses for each

observation. While partial dependency depicts the overall

link between predictor variables and expected responses,

an ICE plot disaggregates the averaged data and depicts

individual dependency for each of the predictor factors.

For each observation, Partial Dependence generates an

ICE plot. A set of ICE plots can be used to study partial

dependence heterogeneities arising from distinct observa-

tions. With the input option Data, Partial Dependence can

also construct ICE charts with any predictor data.

Consider an ICE plot for a given predictor variable xS

with a given observation XC
i , where XS = xS, XC is the

complementary set of XS in the whole variable set X, and

Xi = (XS
i , X

C
i ) is the ith observation, where XS = xS, XC is

the complementary set of XS in the whole variable set X,

and Xi = XS
i , The summation in Eq. 17 is represented by

the ICE plot:

f Si XS
� �

¼ f XS;XC
i

� �
ð17Þ

when you set ’Conditional’ to ’absolute,’ PlotPar-

tialDependence plots f Si XS
� �

for each observation i. When

you set ’Conditional’ to centered, plotPartialDependence

creates all plots after reducing level effects caused by

distinct observations.

f Si;centred XS
� �

¼ f XS;XC
i

� �
� f min XS;XC

i

� �
ð18Þ

2.4 Boosted tree regression (BTR)

Boosted tree regression is a combination of regression and

boosted algorithms. The structure of the BTR is shown in

Fig. 4. The advantage of the boosted regression is that they

can model nonlinear relationships, and do not involve the

removal of outliers to achieve accurate predictions. Also,

BTR does not require data transformations [86]. The pro-

cess of BTR development involves the introduction of a

stochastic gradient procedure. There is the iterative process

of fitting different tree-based models using recursive binary

splits. This is done to minimize model deviance from
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existing trees [87]. The parameters that are defined in BTR

model are the learning rate, tree complexity, number of

leafs, and bag fractions. The combination of the trees to the

final mode is represented by the learning rate. The tree

complexity is used to decide if the interactions of the

variables should be considered. The learning rate and tree

complexity combine to determine the number of trees.

Elith and Leathwick [86] suggested that a maximum of

1000 trees should be used when fitting models.

2.5 Model development

The MATLAB 2020 was used as the software environment

in developing the artificial intelligence models used in this

study. Upon retrieving and preparation of the dataset,

preprocessing of the data was done. The preprocessing

process is carried out to normalizing the dataset. The data

were normalized between 0 and 1. This is done to ensure

that all the variables are within the set range. Equa-

tions (22) and (23) show the mathematical computation for

normalizing and denormalizing the data. The data were

then split into inputs and outputs. The input variables

include nanoparticle density, temperature, volume fraction,

nanoparticle size, nanoparticle mixture ratio, and acentric

factor. The output variable is the hybrid nanofluid relative

viscosity. 700 data points were used in this study and were

retrieved from 12 experimental studies. From this 700 data,

the data were split randomly into 70% training and vali-

dation data and 30% testing data. The training dataset was

used in estimating the optimum training parameters, and

the testing dataset was used in the assessment of the

developed model architecture.

Xn ¼
Xactual � Current minð Þ Newmax � Newminð Þð Þ

Currentmax � Currentminð Þ
þ Newmin ð19Þ

Xactual ¼
Xn � Newminð Þ Currentmax � Currentminð Þð Þ

Newmax � Newminð Þ
þ Currentmin

ð20Þ

In Eq. (19), the Xn represents the normalized data, the

Current min and Currentmax is the minimum and maxi-

mum value in the dataset, while Newmax and Newmin is the

new maximum and minimum values, respectively (1 and

0).

In assessing the predictive models developed, statistical

models are used in comparing the results. The statistical

measurements used in this study are the correlation coef-

ficient (R2) and the mean square error (MSE) values, as

shown in Eqs. (21) and (22), respectively.

R2 ¼ �
1
N

PN
I¼1 yi � ŷið Þ2

1
N

PN
I¼1 yi � yið Þ2

ð21Þ

MSE ¼ 1

N

XN
I¼1

yi � ŷið Þ2 ð22Þ

where yi,byi,yi, and n are the experimental data, predicted

data, the average value of experimental data, and the

number of data points, respectively.

2.6 Dataset

Recent studies on hybrid nanofluids were used to train and

test the neural network. To improve the accuracy of the

Fig. 4 Boosted tree regression

structure
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neural network results, several nanofluids with different

nanoparticles and base fluids were selected. These base

fluids include 5W50 oil, 10W50 oil, SAE40 oil, AE40 oil,

EG, water, and EG-water. These data sets were used so that

the proposed model could account for various base fluids

with different acentric factor and viscosity properties [88].

This difference increases the accuracy of the neural net-

work across a significant range of base fluid materials.

Also, particular interest was placed on hybrid nanofluids

containing ZnO and MWCNT nanoparticles due to their

improved stability properties [60].

The important factors that affect the relative viscosity of

hybrid nanofluids based on experimental studies, as

retrieved from the surveyed literature were used as the

input parameters in this study. The factors are temperature

(T), volume fraction (VF), density (NPD), nanoparticle size

(NPS), mixture ratio (MR), and acentric factor (AF).

The data used in this study were gathered from the lit-

erature and selected based on a few variables. This is

significant since the resilience and effectiveness of

machine learning models are dependent on, but not limited

to, data amount, data diversity, and data quality. The first

criterion was that the correlation models computed in the

literature (where the data is retrieved from) should have an

error range of less than 1.5%. This is to ensure that the

computed relative viscosity was close to the experimental

values. Also, the studies which used classical models like

the Einstein [70], or Wang model [89] for estimating the

viscosity values were excluded when sourcing for data.

This is because the classical models significantly deviate

from experimental values [52]. Also, the experimental

which included the different factors like the nanoparticle

properties like density and size were chosen. This was done

to maintain a uniformity of the various studies.

Table 2 shows the sources of the hybrid nanofluid used

in the predictive models developed in this study.

lnf ¼ lnf T ; VF; NPDi; NPSi; MRi; AFð Þ i ¼ 1; 2 ð23Þ

Furthermore, in this study, considering that there are two

nanoparticles in the hybrid, the data preparation involved

splitting the data into particle 1 and particle 2. The NP1D

represents the density of nanoparticle 1, NP2D represents

the density of nanoparticle 1, NP1S represents the size of

nanoparticle 1, NP2S represents the size of nanoparticle 2,

MR1 represents the mixture ratio of nanoparticle 1, MR2

represents the mixture ratio of nanoparticle 2. The relative

viscosity is represented as CORR.

Table 3 shows that the highest number of data points

was retrieved from the study carried out by Hemmat Esfe

et al. [96]. It should be noted that the data used were

independent of the shear rate variations, as the values that

were used followed the Newtonian behavior. Table 2 also

shows that the experimental studies were conducted

between volume fractions of 0 and 1%, with an exception

of a study by Nabil et al. [93] which investigated the vis-

cosity at a volume fraction of 3%. Also, considering that

the stability of nanofluids is important, especially for

application in solar technologies, Table 2 shows the dif-

ferent techniques used for ensuring stable suspensions. The

descriptive analysis of the dataset is shown in Table 3

3 Results and model assessment criteria

In assessing the prediction accuracy of the O-GPR, BTR,

ANN model, and SVR model, the performance evaluation

tool used is the correlation coefficient (R2) and mean

square error (MSE) values. For the models, the training

process of the dataset was done ten (10) times and the

average value is computed. In the development of the

O-GPR, BTR, ANN and SVR models for prediction of the

relative viscosity of the hybrid nanofluids, the input vari-

ables used are temperature (T), volume fraction (VF),

density (NPD), nanoparticle size (NPS), mixture ratio

(MR) and acentric factor (AF).

3.1 Artificial neural network

The training of the ANN model was done using datasets

which were randomly retrieved from the preprocessed

dataset. The optimum ANN architecture was developed

from a rigorous trial and error process using different

transfer functions, the number of hidden layers, and neu-

rons [71]. Before the training process, the dataset was

normalized for computational efficiency [69]. Table 4

shows the different parameter ranges used in the ANN

model development. The learning algorithms, maximum

iteration, minimum gradient as well as threshold function

adopted for the ANN models are highlighted in Table 4

Table 5 shows the statistical result of the training, test-

ing, and validation data points using different ANN

architectures. The training function used in the model

development is the Bayesian regularization (BR) training

function. The BR training function is used due to its ability

to minimize overfitting problems in the training process as

it takes into account the goodness of fit [68]. The BR

function model has a comparatively better performance

compared to other training functions [72, 73].

From Table 5, it is seen that the optimum ANN archi-

tecture was obtained from the configuration having 2 hid-

den layers with 10 and 30 neurons in the first and second

layers, respectively. The validation dataset result for this

optimum configuration showed an R2 value of 0.9975 and

an MSE value of 0.0119.

A comparative analysis is further done using this opti-

mum model configuration, on different training functions.
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The training functions used are the Levenberg–Marquardt

(LM), scaled conjugate gradient (SCG), and the gradient

descent with momentum (GDM) training functions.

Table 6 shows the performances of the different models.

As can be observed from Table 6, the best prediction

performance is from the BR model. The LM model gives

the second-best prediction accuracy with an R2 value of

0.9883, while the worst performance is seen with the GDM

training function. A graphical representation of the opti-

mum ANN model architecture is shown in Fig. 1. Also, the

low MSE value of the optimum model further shows the

excellence of the model for making predictions.

As can be seen in Fig. 5, all the data points are aligned

along the diagonal line which shows an efficient prediction

Table 2 Hybrid nanofluid data used in the prediction of relative nanofluid

No Nanoparticle Base

Fluid

Nanofluid

concentration

Temperature

(�C)
Stability No of

data

points

References

1 Al2O3/Fe Water 0.05%, 0.1%,

and 0.2%

25–65 PH modulation 35 [90]

2 Al2O3/

MWCNT

Water/

EG

(80:20)

0.0625, and

1%

25–50 Mixing and sonication 39 [50]

3 Al2O3/

MWCNT

5W50

Oil

0.05–1% 25–50 Mixing and sonication 41 [91]

4 MWCNT/

MgO

EG 0–1.0% 30–60 Ultrasonication/pH modulation 45 [48]

5 Al2O3/

MWCNT

SAE40

Oil

0–1.0% 25–50 Mixing by magnetic stirrer for 2 h 51 [92]

6 TiO2/SiO2 Water/

EG

(60:40)

0.5–3.0% 30–80 Sonication for 90 min 51 [93]

7 ZnO/Ag Water 0.125–2% 25–50 Surfactant (not stated) 57 [74]

8 SiO2/

MWCNT

SAE40

Oil

0–2.0% 25–50 Mixing and sonication 57 [94]

9 ZnO/

MWCNT

10W50

Oil

0.05–1% 5–55 Ultrasonic waves for 6 h, using 1200Wultrasonic

processor

57 [95]

10 SiO2/

MWCNT

AE Oil 0.0625–1.0% 25–60 Mixing and sonication 63 [62]

11 SiO2/

MWCNT

SAE40

Oil

0–1.0% 25–60 Magnetic stirring for 2.5 h, the suspensions were

exposed to an ultrasonic processor

63 [45]

12 ZnO/

MWCNT

SAE40

Oil

0–1.0% 25–60 Magnetic stirring for 1 h, exposed to an ultrasonic

processor of KND-1200-UH1 with power of 1200 W

for 8 h

141 [96]

Table 3 Descriptive statistics of predictive and target variables

NP1D NP2D NP1S NP2S MR1 MR2 T VF AF CORR

Count 700 700 700 700 700 700 700 700 700 700

Mean 0.420327 0.385824 0.615357 0.466514 0.651810 0.638929 0.494375 0.169333 0.836098 0.466759

Standard deviation 0.186022 0.180993 0.209199 0.214781 0.125097 0.117278 0.156332 0.167659 0.220202 0.107086

Minimum 0.228571 0.044595 0.250000 0.160000 0.266667 0.312500 0.062500 0.000000 0.480392 0.304905

25% 0.228571 0.374599 0.500000 0.400000 0.666667 0.625000 0.375000 0.041667 0.682073 0.398058

50% 0.370476 0.374599 0.500000 0.400000 0.666667 0.625000 0.500000 0.133333 1.000000 0.439498

75% 0.533905 0.374599 0.625000 0.520000 0.666667 0.625000 0.625000 0.250000 1.000000 0.484465

Maximum 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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analysis. The R2 value for the training, testing, and vali-

dation data are 0.9983, 0.9980, and 0.9975, respectively.

The high correlation coefficient of the training, testing, and

validation data shows that the model can be used to

accurately make predictions of the relative viscosity of

hybrid nanofluids.

Based on the optimum ANN model developed, a uni-

versal formula is derived for obtaining the viscosity of

hybrid nanofluids Eq. (24).

X30
i¼1

w3
i1ð1=1þ expð�ð

X10

j¼1
w2
jið1=1

þ expð�ð
X11

k¼1
w1
kjuk þ b1j ÞÞÞ þ b2i ÞÞÞ þ b31 ð24Þ

where the bias weights are given as bkj and wk
ji is the link

weights for the neuron j in layer k. uk is the input variable

matrix for the six input parameters. A supplementary file

containing the weights and bias of the optimum ANN

model architecture is attached.

Table 4 Parameters for the

ANN training algorithm
Parameters Values

Maximum iteration 1000

Minimum gradient 1e-07

Training dataset 70%

Testing dataset 30%

Learning rate 0.1

Number of hidden layers 1 layer, 2 layers

Node in hidden layers 1 Hidden layer-10, 15, 20, 25/30

2 Hidden layer -5/10, 5/15, 5/25, 10/10, 10/15, 10/20, 10/25, 10/30

Learning algorithm LM, SCG, BR, GDM

Threshold function Logistic sigmoid – neuron activation function

Purelin – activation function for the output neuron

Performance metric R2, MSE, RMSE, MAE

Table 5 Statistical result of

ANN configuration
Hidden Layers Neurons Training Testing Validation

1 5 0.00122963 0.980915 0.0526 0.9896 0.0327 0.9803

10 0.000252779 0.996192 0.0294 0.9968 0.0170 0.9950

15 0.000130475 0.997945 0.0241 0.9978 0.0149 0.9961

20 0.00009800 0.998477 0.0182 0.9988 0.0157 0.9957

25 0.000111477 0.998249 0.0234 0.9979 0.0123 0.9973

30 0.000126951 0.9980123 0.0213 0.9983 0.0144 0.9963

2 5–10 0.00035925 0.9945 0.0174 0.9989 0.0258 0.9881

5–15 0.00018373 0.9972 0.0271 0.9973 0.0158 0.9956

5–25 0.00015144 0.9976 0.0254 0.9976 0.0147 0.9962

10–10 0.00016053 0.9975 0.0242 0.9978 0.0150 0.9960

10–15 0.00017828 0.9973 0.0198 0.9985 0.0176 0.9944

10–20 0.0001087 0.9984 0.0163 0.9990 0.0144 0.9964

10–25 0.0001819 0.9982 0.0167 0.9990 0.0150 0.9960

10–30 0.00011027 0.9983 0.0235 0.9979 0.0119 0.9975

Table 6 Statistical result of

ANN configuration with

different transfer functions

(using optimum hidden layers

and neurons)

Transfer Function Neurons Training Testing Validation

MSE R2 MSE R2 MSE R2

BR 10–30 0.00011027 0.9983 0.00055225 0.9979 0.00014161 0.9975

LM 10–30 0.0005998 0.9908 0.00101761 0.9963 0.00065025 0.9883

SCG 10–30 0.0119 0.8147 0.02313441 0.8718 0.00620944 0.8680

GDM 10–30 0.3619 0.0302 0.197136 0.0046 0.0015460624 0.3351
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3.2 Support vector machine

The MATLAB regression learner toolbox was used for

developing the model. As stated in the previous section, the

dataset was split into 70% training and 30% validation

dataset. The generalization capabilities of the SVR model,

which involves the effective prediction of the data vali-

dation data in the training phase, is affected by the type of

kernel function, gamma of the kernel function, the bias of

the kernel function, and the degree of the polynomial

kernel function. In this study, these factors are tuned sev-

eral times to get the optimum SVR model for accurate

prediction. The polynomial function was selected for this

study as it gave the best performance. The cubic polyno-

mial was comparatively better in performance than the

linear, RBF, and sigmoid functions. Figure 2 shows the

comparative performance of the different kernel functions.

The cross-validation used is the K-fold CV, and this infers

the generalization ability [53]. In this study, the CV was set

to 5, and the epsilon value which describes the error

between the predicted and measured value in a high-di-

mensional space [54] was optimized to a value of 0.0741.

Table 7 shows the optimum parameters for SVR modeling.

Figure 6 shows that the cubic kernel gave the best pre-

diction. Table 8 shows the performance of the training,

testing, and validation data retrieved from the SVR model.

The high R2 value of 0.9636 gotten from the validation

data showed an efficient prediction accuracy. Also, the low

MSE values for the training, testing, and validation data

confirm the high prediction performance of the optimum

SVR model developed in this study.

Figure 7 shows the cross-plot between the measure

relative viscosity and the predicted relative viscosity by the

SVR model. As seen in Fig. 7, the clustering of the data

points along the straight line shows that there is a high

agreement between the measured and the predicted values.

Fig. 5 Measured relative viscosity vs ANN predicted relative viscosity for (a) Training data points (b) Testing data points (c) Validation data

points

Table 7 Optimum parameters for SVR modeling

Model parameters Optimal values

Function Cubic SVM

Kernel scale 0.9112

Bias 1.4719

K folds 5

Epsilon (e) 0.0741
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The R2 value of the training, testing, and validation data

showed that the model has a high accuracy for the pre-

diction of the relative viscosity of the hybrid nanofluids.

3.3 Optimized Gaussian process regression

In Gaussian process regression, the response is modeled

using a probability distribution over a space of functions.

The flexibility of the presets in the Model Type gallery is

automatically chosen to give a small training error and,

simultaneously, protection against overfitting. The

MATLAB 2020 is the simulation environment used in

developing the O-GPR model. The nine (10) features used

in developing the model are labeled NP1D, NP2D, NP1S,

NP2S, MR1, MR2, TEMP, VF, AF, and CORR, as

explained in Eq. 26. In this study, an algorithm is designed

0

0.2

0.4

0.6

0.8

1

1.2

MSE MAE R2

Linear SVM Quadra�c SVM Cubic SVM Fine Gaussian SVM
Fig. 6 Comparative statistical

result of different kernel

functions in SVR (training data

points)

Table 8 Optimum statistical

results for SVR modeling
Parameters Training dataset Testing dataset (MSE) Validation dataset (MSE)

MSE 0.0037552 0.01404225 0.00210681

R2 0.9613 0.9486 0.9636

Fig. 7 Measured relative viscosity vs SVR predicted relative viscosity for (a) Training data points (b) Testing data points (c) Validation data

points
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that searches among the following kernel functions,

namely: Nonisotropic Rational Quadratic, Isotropic

Rational Quadratic, Nonisotropic Squared Exponential,

Isotropic Squared Exponential, Nonisotropic Matern 5/2,

Isotropic Matern 5/2, Nonisotropic Matern 3/2, Isotropic

Matern 3/2, Nonisotropic Exponential, and Isotropic

Exponential.

Using the data, the Gaussian process regression model is

trained. The response variable includes interactions

between predictor variables. To establish the relationship

between a feature and the predicted responses for each

observation, the ICE plot is implemented. The cumulative

effect of the selected feature can be examined by using the

offset plots to start from zero, using the MATLAB ’Con-

ditional’ setting. Table 9 shows the optimizer functions

used in developing the O-GPR model.

The predictor variables are also compared to ascertain

their importance in the prediction process. Also, the esti-

mates of predictor importance are analyzed. The predictor

importance function summarizes the importance of a pre-

dictor with a single value. This function sums changes in

the mean squared error (MSE) due to splits on every pre-

dictor and then divides the sum by the number of branch

nodes. The predictors are ascribed 1, 2, 3, 4, 5, 6, 7, 8, 9 to

NP1D, NP2D, NP1S, NP2S, MR1, MR2, TEMP, VF, AF,

respectively.

Table 10 also shows the predictor ranks in terms of their

importance in estimating the target variable (Relative vis-

cosity). Table 10 shows that the 8th variable (volume

fraction) has the most impact on Relative viscosity ac-

cording to predictor importance. This corroborates with

experimental results, that explain the significant effect of

volume fraction on relative viscosity [12, 55, 56]. The PDP

of the 8th Variable also shows that CORR has high partial

dependence on the 8th Variable. The 2nd variable

(nanoparticle density) also shows high importance in the

prediction of relative viscosity. This also supports results in

the literature, as a study by Corcione et al. [12] developed a

correlation formula for viscosity prediction using the

nanoparticle density and volume fraction, which gave

excellent prediction based on the small deviation recorded.

The 6th variable (Mixture ratio) has the least impact

on relative viscosity according to predictor importance.

The PDP of 6th also shows that relative viscosity does not

change depending on the feature. The PDP of 5th also

shows that relative viscosity does not change much

depending on the feature.

The algorithm kernel scale searches among real values

in the range [0.075–75], sigma between [0.0001–2.5347],

and standardization between true and false as estimated.

This mode is important as standardizing removes the

dependence on arbitrary scales in the predictors and gen-

erally improves performance. Standardizing the predictors

transforms them so that they have a mean of 0 and standard

deviation of 1. A value of 0.21431 is assigned as an initial

Kernel scale parameter developed via a heuristic

procedure.

In this study, hyperparameter tuning is performed by

using Bayesian optimization. The goal of Bayesian opti-

mization, and optimization in general, is to find a point that

minimizes an objective function (loss function/MSE).

Figure 8 shows the error index. Figure 8 shows light blue

points representing the estimated minimum MSE, and dark

blue point corresponds to the observed minimum MSE

which is drawn out during the optimization process. For

holdout validation, the score is the RMSE on the held-out

observations. An RMSE of 0.022056 is obtained. The

Coefficient of determination (R-squared) value of 0.999998

is obtained, which shows a significantly excellent accuracy,

as this value is expected to be closer to 1. The mean square

error MSE value is 0.00048645 which is quite small and

desired. The mean absolute error MAE just like RMSE, is

desired to be a small value; however, they are less sensitive

to outliers. An MAE of 0.013111 is recorded.

Figures 9 and 10 show the predicted relative viscosity

values for training (validation) and testing sets show close

vales to the measured values. The R-squared values

recorded for the training and testing sets are 0.999989 and

0.999998, respectively, as shown in Table 11.

3.4 Boosted tree regression (BTR)

The BTR model is developed in the MATLAB 2020

environment. Table 12 shows the parameters defined in

developing the BTR model.

Figures 11 and 12 which depict the predicted relative

viscosity values for training (validation) and testing sets,

respectively, show close vales to the measured values. The

R-squared values recorded for the training and testing sets

are 0.887874 and 0.867569, respectively, as shown in

Table 13. The MSE result recorded for the training and test

model is 0.007943 and 0.0078502, respectively. The BTR

is seen to be comparatively less efficient than the other

machine learning tools used in this study, and this can be

attributed to its over-sensitivity to outliers as every clas-

sifier is required to rectify the flaws in the predecessors.

Table 9 Optimizer functions

Optimizer options

Optimizer Bayesian optimization

Iterations 30

Training time limit False
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Furthermore, the BTR can overemphasize outliers and

cause overfitting. It is also of worthy note that tree-based

models aren’t meant to function with very few features

[57, 58].

3.5 Comparison of models used in this study

Table 14 shows a comparison of the statistical result of the

O-GPR, BTR, ANN, and SVR models. The models showed

Table 10 Predictor ranking

Predictor 1 2 3 4 5 6 7 8 9

Importance 8.58e-06 2.24e-05 2.16e-06 9.90e-07 1.28e-07 4.34e-09 1.34e-06 2.46e-05 3.71e-06

Rank 3rd 2nd 5th 7th 8th 9th 6th 1st 4th

Fig. 8 Error index against

iterations of the O-GPR model

Fig. 9 Predicted versus

experimental values of training

(validation) relative viscosity

dataset of the O-GPR model
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a high prediction accuracy based on their high R2 and low

MSE values. The O-GPR model outperformed the other

models, which goes to show that a better prediction for the

viscosity of hybrid nanofluids will be achieved using the

O-GPR model developed in this study.

3.6 Model validity

This section compares the ability of the machine learning

algorithms used in this study with some theoretical models

used in the literature to estimate the relative viscosity of

hybrid nanofluids.

Theoretical models have been developed by several

researchers for determining the viscosity of nanofluids. It is

observed that most of the models developed for the vis-

cosity of nanofluids do not include the temperature

parameter or many of the parameters used in developing

the model used in this study [59]. Yan et al. [60] stated that

the nanofluid viscosity is greatly affected by the tempera-

ture. The Brinkman [61], Wang et al. [32], Cheng et al.

[44], and Ludgren [62] models were compared with the

optimum AI models developed.

The Brinkman model was developed as an expansion of

the Einstein model [18], which was used in determining the

viscosity of a mixture of solid particles suspended in a

liquid. The Brinkman model as shown in Eq. (25) was used

for larger volume fractions.

lnf
lbf

¼ 1� uð Þ
2:5

ð25Þ

Also, a model was proposed by Wang et al. [32], to

determine, the dynamic viscosity of nanofluids is shown in

Eq. (26).

lnf
lbf

¼ 1þ 7:3uþ 123u2
� �

ð26Þ

Another model was proposed by Ludgren [62], using the

Taylor series form

lnf
lbf

¼ 1

ð1� 2:5uÞ ¼ ð1þ 2:5uþ 6:25u2Þ ð27Þ

where
lnf
lbf

is the relative viscosity and u is the volume

fraction of the nanofluid.

The theoretical models were used to compute the rela-

tive viscosity of the Al2O3/MWCNT hybrid nanofluid [34]

and compared with the predicted values of the O-GPR,

Fig. 10 Predicted versus experimental dataset of test of relative

viscosity dataset of the O-GPR model

Table 11 Optimizable GPR

results
Phase Description

Model type Signal standard deviation Optimizable GPR 0.17923

Training (Validation) result Observations 490 (70%)

Features 9

RMSE 0.022056

R-Squared 0.999989

MSE 0.00039607

MAE 0.01107

Training time 3152 s

Testing Result Observations 210 (30%)

RMSE 0.015975

MSE 0.0002552

MAE 0.0084404

R-Squared 0.999998

Table 12 Parameters for BTR

development
Parameters Values

Minimum leaf size 8

Number of learners 30

Learning rate 0.1
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BTR, ANN and SVR models as seen in Fig. 13. The rel-

ative viscosity of the Al2O3/MWCNT hybrid nanofluid was

measured and predicted at 25 �C and volume concentration

of 0.0625, 0.125, 0.25, 0.5, 0.75, and 1% [34]. This

experimental nanofluid was retrieved from a study done by

Afshari et al. [34]. The purpose of this analysis is to

compare the robustness of the machine learning models

developed in this study with other classical models for

viscosity estimations, across varying volume

concentrations.

Figure 13 shows a high deviation of the theoretical

models in estimating the relative viscosity. The ineffi-

ciency of the theoretical models to effectively predict the

relative viscosity of the hybrid nanofluid is because the

models only accounted for the volume fraction as a vari-

able in its computation. It is therefore seen that despite the

significant effect of volume fraction on the relative vis-

cosity behavior of nanofluid, other parameters are impor-

tant for their accurate estimation. Figure 13 shows that the

Cheng et al. [44] model predicts the trend better than the

other models. This can be attributed to the higher coeffi-

cient of the second-order volume fraction. This is corrob-

orated by a study carried out by Mahdi et al. [56]. The

relative viscosity values of the O-GPR, BTR, ANN, and

SVR models are closer to the measured values. The max-

imum deviation of the O-GPR, BTR, ANN, and SVR

Fig. 11 Training (validation)

predicted VS experimental

values of relative viscosity of

BTR model

Fig. 12 Test predicted versus experimental values of relative

viscosity of BTR model

Table 13 Statistical error of BTR model

Training (Validation) Testing

RMSE 0.089124 0.088601

MSE 0.007943 0.0078502

MAE 0.063919 0.067881

R-Squared 0.887874 0.867569
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models are 0.286, 9.35, 0.497, and 0.482, respectively. The

study of Mehdi et al. [49] corroborates the efficacy of the

GPR model as their study also showed excellent prediction

accuracy in their SHC prediction model. This study only

considered Newtonian nanofluid, so the shear rate was not

considered as a parameter.

3.7 Comparative analysis with other studies/
results on viscosity prediction of nanofluids

As stated in earlier sections, improvement in prediction

accuracy of thermophysical properties is important in the

discourse of their application to solar energy technologies

as heat transfer fluids. The result retrieved in the study

being compared with that retrieved by other authors.

From Table 15, it is seen that this present study utilized

more diverse input variables (6) in the prediction analysis,

as compared to other studies. Considering that machine

learning algorithms are data-driven, the inclusion of more

diverse variables ensures better mapping of the predictors

to the target values. Table 15 also shows that the R-squared

value recorded in this study is the closest to the desired

value of 1, which shows excellent prediction accuracy of

the viscosity of hybrid nanofluids. The MSE value of

0.0002552 in this study is also the lowest seen in works of

literature.

4 Implication on solar energy system
application/future remarks

The application of nanofluids for solar energy technologies

has been shown to improve their efficiencies. Furthermore,

another advantage of nanofluid-based solar systems is cost-

effectiveness, which a study by Taylor et al. [117] showed.

In their study, graphite nanofluids were used for a

10–100 MW solar power tower system. Their result

showed a 10% increase in efficiency in utilizing nanofluids

in the receiver section of the system, which would yield an

estimated 3.5 million dollars per year as revenue. However,

as earlier stated, the utilization of nanofluids for solar

energy technologies is dependent on trade-offs between the

different thermophysical and rheological properties of

thermal conductivity, viscosity, density, and specific heat

capacity. Improving thermal conductivity, which is usually

achieved by increasing temperature and volume concen-

tration, is desirable. However, an increase of volume

fraction beyond a certain threshold results in a net negative

in the viscosity of the fluids [118]. This gives a strong

argument that efficiently ascertaining the optimum vis-

cosity plays a significant role in the design of nanofluid-

based solar energy technologies. Furthermore, the design of

synthesis for the nanofluid study is usually expensive,

especially for hybrid nanofluids, therefore, there is a need

for robust and efficient AI models that would be able to

accurately estimate this property. This in turn will make the

design of nanofluid-based solar systems more cost-effec-

tive. The growth in the field of AI has afforded the leverage

to utilize novel machine learning algorithms to more

accurately estimate the viscosity of nanofluids. This study

has shown that the application of Optimizable Gaussian

process regression yields a very high prediction accuracy

for viscosity estimation.

From a futuristic perspective, developing safe and sus-

tainable energy solutions to meet increasing energy

demands has become more demanding due to growing

population and a need to cut fossil fuel usage. Solar col-

lector systems have shown to be an effective alternative

energy producer. Therefore, more research into increasing

its implementation in global energy mix is key to solving

more energy problems. The practical application of

nanofluids for solar thermal systems is still in its infancy

stage despite the knowledge of their improved efficiency.

This is attributed to factors like cost, synthesis methods,

Table 14 Performance of

proposed machine learning

algorithms

Machine learning algorithms O-GPR BTR ANN SVR

MSE 0.0002552 0.0078502 0.00014161 0.00210681

R2 0.999998 0.867569 0.997578 0.963667

Model rank 1 4 2 3
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Fig. 13 Comparison of measured values of relative viscosity with

predicted values using different models for Al2O3/MWCNT hybrid

nanofluid, with a mixture ratio of 75:25%, at T = 25 �C
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and a few experimental nanofluid-based solar designs. For

more implementation of nanofluid-based solar system

designs, the numerical estimation of the thermophysical

properties of nanofluids has to be developed and utilized.

The authors also suggest that solar energy designers

should keep updated with novel machine learning tools, as

their utilization for giving more accurate prediction of

thermophysical properties of nanofluids is instrumental in

the search for more cost-effective efficient solar energy

technologies.

5 Conclusion

This study shows the applicability of efficiently predicting

the relative viscosity of hybrid nanofluid. The proposed

O-GPR, BTR, ANN, and SVR models were built using six

input parameters namely nanoparticle density, nanoparticle

size, mixture ratio, acentric factor, temperature, and vol-

ume fraction. 700 data points were retrieved from 12

experimental studies on hybrid nanofluids. The optimum

O-GPR, BTR, ANN, and SVR models were developed

from varying several parameters in their architecture.

Furthermore, the study also compares the prediction result

of the AI models with theoretical models for predicting

viscosity. Based on the statistical result obtained, the fol-

lowing conclusions are made.

• The O-GPR model has a comparatively better predic-

tion performance of the relative viscosity of hybrid

nanofluids. A coefficient of determination of 0.999998

was recorded.

• The O-GPR model has a better prediction accuracy of

the relative viscosity when compared with other BTR,

ANN, and SVR models, as the lowest MSE value of

0.002552 was recorded.

• The O-GPR, BTR, ANN, and SVR models have better

performance than the theoretical models.

• The MSE result recorded for the training and test model

for the BTR model is 0.007943 and 0.0078502,

respectively

• The MSE result recorded for the training and test model

for the SVR model is 0. 0.0037552 and 0. 01,404,225,

respectively

• The maximum deviation of the O-GPR, BTR, ANN,

and SVR models used in estimating the Al2O3/

MWCNT hybrid nanofluid are 0.286, 9.35, 0.497, and

0.482, respectively

• The R2 values for the O-GPR, BTR, ANN, and SVR

models are 0.999998, 0.867569 0.997578, and 0.963667

• Theoretical models are not accurate predictors of

relative viscosity as they do not consider other param-

eters that affect the viscosity of the nanofluids.

• The design of synthesis for the nanofluid study is

usually expensive, especially for hybrid nanofluids;

therefore, there is a need for robust and efficient AI

Table 15 Comparison with other studies

References Nanofluids Data

size

Input variables Machine

learning

Statistical error

index

R-

squared

Karimi et al.

[74]

Al2O3, CuO, TiO2, SiO2 114 Temperature, volume fraction,

Particle size, base fluid

viscosity

GA-NN MARE – 2.48% 0.998001

Li et al. [63] Al2O3 48 Temperature, Volume fraction ANN MSE – 0.00837 0.99972

Ma et al. [64] Al2O3-CuO

SiO2-TiO2

99 Temperature, Mixture ratio ANN – 0.9755

Hemmati-

Sarapardeh

et al. [65]

Al2O3, CuO, SiO2, TiO2, SiC, Fe3O4,

MgO, Mg(OH)2, CO3O4,

Nanodiamonds, ZnO

3144 Temperature, volume fraction,

Particle size, base fluid

viscosity

MLP,

LSSM

MSE = 0.008649

AARE = 3.95%

–

Gholizadeh

et al. [66]

Al2O3, CuO, SiO2, TiO2, SiC, Fe3O4,

MgO, Mg(OH)2, CO3O4,

Nanodiamonds, ZnO, CNT, MWCNT,

COOH

2890 Temperature, volume fraction,

Particle size, basefluid

viscosity, Density of

nanoparticle

Random

Forest,

MLP,

SVR

MSE = 0.019321 0.978121

Jamei et al.

[67]

Al2O3-MWCNT

SiC- TiO2, MWCNT-MgO, MWCNTs-

ZnO, MWCNT- SiO2

679 Temperature, volume fraction,

Particle size, basefluid

viscosity, Density of

nanoparticle

MGGP,

MLR

0.0025 0.982081

Present Study MWCNT-MgO, Al2O3-MWCNT, ZnO-

Ag, TiO2- SiO2, Al2O3/Fe, SiO2-

MWCNT

700 Temperature, volume fraction,

Particle size, basefluid

viscosity, Density of

nanoparticle, Mixture ratio

O-GPR,

ANN,

SVR,

BTR

0.0002552 0.999998
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models that would be able to accurately estimate this

property, which will make the design of nanofluid-

based solar system more cost-effective. This study

shows that the implementation of the optimizable

Gaussian process regression gives excellent prediction

accuracy.
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