Skip to main content
Log in

Intuitionistic fuzzy inference system with weighted comprehensive evaluation considering standard deviation-cosine entropy: a fused forecasting model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Recent development in intuitionistic fuzzy inference system (IFIS) has been emerged with promising results in defining uncertain information and improving its capacity to forecast real-world time series data. Nonetheless, many factors such as non-linearity data, stochastic dynamic problems and weights of attributes are explicitly affect the performance of IFIS. In this paper, we introduce a new method of determining weight of variable to perform an intuitionistic fuzzy comprehensive evaluation that to be fused with an IFIS. In order to weight the credibility of each causal variable in the experimental of particulate matter (PM10) data, a synthesized weight that is established from two different methods of weighting is developed. Two objective weightings known as the intuitionistic fuzzy-standard deviation and intuitionistic fuzzy-cosine entropy are combined as to consider statistical properties and trigonometric properties within the intuitionistic fuzzy set environment. This paper also investigates whether the two weighting methods have the same impact on the forecasting. The experimental results show that our proposed synthesized weighting method outperforms other three weight methods in PM10 forecasting under IFIS environment. The experimental results also verify that different methods of weighting have different influence on performance of the forecasting. This is the first identifiable synthesized weighted comprehensive evaluation that fused in IFIS and its application to PM10 forecasting. Finally, some consideration regarding the limitations of the study and potential research direction is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vieira J, Dias FM, Mota A (2004) Neuro-fuzzy systems: a survey neuro-fuzzy systems: a survey. In: Conference: 5th WSEAS NNA international conference on neural networks and applications, Udine, Italia

  2. Xu Z, Cai X (2010) Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optim Decis Mak 9:359–381. https://doi.org/10.1007/s10700-010-9090-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Ejegwa BPA, Akubo AJ, Joshua OM (2014) Intuitionistic fuzzy sets in career determination. J Inf Comput Sci 14:285–288

    Google Scholar 

  4. Liu J, Li H, Huang B et al (2019) Similarity–divergence intuitionistic fuzzy decision using particle swarm optimization. Appl Soft Comput 81:105479. https://doi.org/10.1016/j.asoc.2019.05.006

    Article  Google Scholar 

  5. Das S, Guha D (2017) Attribute weight computation in a decision making problem by particle swarm optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3209-z

    Article  Google Scholar 

  6. Own CM (2009) Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: An application in medical diagnosis. Appl Intell 31:283–291. https://doi.org/10.1007/s10489-008-0126-y

    Article  Google Scholar 

  7. Chaira T, Panwar A (2014) An Atanassov’s intuitionistic fuzzy kernel clustering for medical image segmentation. Int J Comput Intell Syst 7:360–370. https://doi.org/10.1080/18756891.2013.865830

    Article  Google Scholar 

  8. Chaira T, Chaira T (2008) Intuitionistic fuzzy set: application to medical image segmentation. Comput Intell Med Inform 68:51–68. https://doi.org/10.1007/978-3-540-75767-2_3

    Article  MATH  Google Scholar 

  9. Intarapaiboon P (2015) A framework for text classification using intuitionistic fuzzy sets. In: Lecture notes in electrical engineering, pp 737–746

  10. Bai X, Sun C, Sun C (2019) Cell segmentation based on FOPSO combined with shape information improved intuitionistic FCM. IEEE J Biomed Health Inform 23:449–459. https://doi.org/10.1109/JBHI.2018.2803020

    Article  Google Scholar 

  11. Olej V, Hájek P (2010) Air quality modeling by fuzzy sets and IF-sets. In: Environmental modeling for sustainable regional development. IGI Global, pp 118–143

  12. Olej V, Hájek P (2011) Comparison of fuzzy operators for IF-inference systems of Takagi-Sugeno type in ozone prediction. In: IFIP Adv Inf Commun Technol, vol 364. AICT, pp 92–97. https://doi.org/10.1007/978-3-642-23960-1_11

  13. Feng X, Li Q, Zhu Y et al (2015) Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos Environ 107:118–128. https://doi.org/10.1016/j.atmosenv.2015.02.030

    Article  Google Scholar 

  14. Bento PMR, Pombo JAN, Mendes RPG et al (2021) Ocean wave energy forecasting using optimised deep learning neural networks. Ocean Eng 219:108372. https://doi.org/10.1016/j.oceaneng.2020.108372

    Article  Google Scholar 

  15. Ghadban M, Baayoun A, Lakkis I et al (2020) A novel method to improve temperature forecast in data-scarce urban environments with application to the Urban Heat Island in Beirut. Urban Clim 33:100648. https://doi.org/10.1016/j.uclim.2020.100648

    Article  Google Scholar 

  16. Fong SJ, Li G, Dey N et al (2020) Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Appl Soft Comput J 93:106282. https://doi.org/10.1016/j.asoc.2020.106282

    Article  Google Scholar 

  17. Olej V, Hájek P (2010) IF-inference systems design for prediction of ozone time series: the case of pardubice micro-region. In: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics), vol 6352. LNCS, pp 1–11. https://doi.org/10.1007/978-3-642-15819-3_1

  18. Hájek P, Olej V (2012) Adaptive intuitionistic fuzzy inference systems of Takagi-Sugeno type for regression problems. In: IFIP advances in information and communication technology, pp 206–216

  19. Joshi BP, Kumar S (2012) Intuitionistic fuzzy sets based method for fuzzy time series forecasting. Cybern Syst 43:34–47. https://doi.org/10.1080/01969722.2012.637014

    Article  MATH  Google Scholar 

  20. Hung KC, Lin KP (2013) Long-term business cycle forecasting through a potential intuitionistic fuzzy least-squares support vector regression approach. Inf Sci (NY) 224:37–48. https://doi.org/10.1016/j.ins.2012.10.033

    Article  MathSciNet  Google Scholar 

  21. Gangwar SS, Kumar S (2014) Probabilistic and intuitionistic fuzzy sets-based method for fuzzy time series forecasting. Cybern Syst 45:349–361. https://doi.org/10.1080/01969722.2014.904135

    Article  MATH  Google Scholar 

  22. Joshi BP, Kumar S (2012) A computational method of forecasting based on intuitionistic fuzzy sets and fuzzy time series. In: Deep K, Nagar A, Pant M, Bansal J (eds) Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20–22, 2011. Advances in intelligent and soft computing, vol 131. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0491-6_91J1000

  23. Wang Y, Lei Y, Fan X, Wang Y (2016) Intuitionistic fuzzy time series forecasting model based on intuitionistic fuzzy reasoning. Math Probl Eng. https://doi.org/10.1155/2016/5035160

    Article  MathSciNet  MATH  Google Scholar 

  24. Ahmadi M, Khashei M (2021) Current status of hybrid structures in wind forecasting. Eng Appl Artif Intell 99:104133. https://doi.org/10.1016/j.engappai.2020.104133

    Article  Google Scholar 

  25. Seo IW, Yun SH, Choi SY (2016) Forecasting water quality parameters by ANN model using pre-processing technique at the downstream of Cheongpyeong Dam. Procedia Eng 154:1110–1115. https://doi.org/10.1016/j.proeng.2016.07.519

    Article  Google Scholar 

  26. Wang Z, Wang C, Wu J (2016) Wind energy potential assessment and forecasting research based on the data pre-processing technique and swarm intelligent optimization algorithms. Sustainability 8:1191. https://doi.org/10.3390/su8111191

    Article  Google Scholar 

  27. Khajehei S, Moradkhani H (2017) Towards an improved ensemble precipitation forecast: a probabilistic post-processing approach. J Hydrol 546:476–489. https://doi.org/10.1016/j.jhydrol.2017.01.026

    Article  Google Scholar 

  28. Han K, Choi J, Kim C (2018) Comparison of statistical post-processing methods for probabilistic wind speed forecasting. Asia-Pac J Atmos Sci 54:91–101. https://doi.org/10.1007/s13143-017-0062-z

    Article  Google Scholar 

  29. Davò F, Alessandrini S, Sperati S et al (2016) Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting. Sol Energy 134:327–338. https://doi.org/10.1016/j.solener.2016.04.049

    Article  Google Scholar 

  30. Olvera-garcía MÁ, Carbajal-hernández JJ, Sánchez-fernández LP, Hernández-bautista I (2016) Air quality assessment using a weighted Fuzzy Inference System. Ecol Inform 33:57–74

    Article  Google Scholar 

  31. Yang Z, Wang J (2017) A new air quality monitoring and early warning system: air quality assessment and air pollutant concentration prediction. Environ Res 158:105–117

    Article  Google Scholar 

  32. Jiang P, Liu Z (2019) Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2019.105587

    Article  Google Scholar 

  33. Jiang P, Yang H, Li R, Li C (2020) Inbound tourism demand forecasting framework based on fuzzy time series and advanced optimization algorithm. Appl Soft Comput J 92:106320. https://doi.org/10.1016/j.asoc.2020.106320

    Article  Google Scholar 

  34. Lu P, Wu J, Pan W-P (2010) Particulate matter emissions from a coal-fired power plant. In: 2010 4th Int Conf Bioinforma Biomed Eng, pp 1–4. https://doi.org/10.1109/ICBBE.2010.5517175

  35. Liu H, Li Y, Duan Z, Chen C (2020) A review on multi-objective optimization framework in wind energy forecasting techniques and applications. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2020.113324

    Article  Google Scholar 

  36. Pauzi HM, Abdullah L, Hajek P (2020) An optimized hybrid forecasting model and its application to air pollution concentration. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04572-w

    Article  Google Scholar 

  37. Homod RZ, Togun H, Abd HJ, Sahari KSM (2020) A novel hybrid modelling structure fabricated by using Takagi-Sugeno fuzzy to forecast HVAC systems energy demand in real-time for Basra city. Sustain Cities Soc 56:102091. https://doi.org/10.1016/j.scs.2020.102091

    Article  Google Scholar 

  38. Zougagh N, Charkaoui A, Echchatbi A (2021) Artificial intelligence hybrid models for improving forecasting accuracy. Procedia Comput Sci 184:817–822. https://doi.org/10.1016/j.procs.2021.04.013

    Article  Google Scholar 

  39. Dave E, Leonardo A, Jeanice M, Hanafiah N (2021) Forecasting indonesia exports using a hybrid model ARIMA-LSTM. Procedia Comput Sci 179:480–487. https://doi.org/10.1016/j.procs.2021.01.031

    Article  Google Scholar 

  40. Anooj P (2011) Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules and decision tree rules. Open Comput Sci 1:482–498. https://doi.org/10.2478/s13537-011-0032-y

    Article  Google Scholar 

  41. Chen TY, Li CH (2010) Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis. Inf Sci (NY) 180:4207–4222. https://doi.org/10.1016/j.ins.2010.07.009

    Article  Google Scholar 

  42. Das S, Dutta B, Guha D (2016) Weight computation of criteria in a decision-making problem by knowledge measure with intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set. Soft Comput 20:3421–3442. https://doi.org/10.1007/s00500-015-1813-3

    Article  MATH  Google Scholar 

  43. Suhartono LMH (2011) A hybrid approach based on Winter’s model and weighted fuzzy time series for forecasting trend and seasonal data. Department of Statistics, Faculty of Mathematics and Natural Sciences, Institute Technology Sepuluh No. J Math Stat 7:177–183

    Article  Google Scholar 

  44. Mohamad D, Mukhtar FL, Sciences M (2018) Weighted mamdani-type fuzzy inference system based on relative ideal preference system. J Soft Comput Decis Support Syst 5:1–7

    Google Scholar 

  45. Rubio A, Bermúdez JD, Vercher E (2016) Forecasting portfolio returns using weighted fuzzy time series methods. Int J Approx Reason 75:1–12. https://doi.org/10.1016/j.ijar.2016.03.007

    Article  MathSciNet  MATH  Google Scholar 

  46. Ung S (2018) Development of a weighted probabilistic risk assessment method for offshore engineering systems using fuzzy rule-based Bayesian reasoning approach. Ocean Eng 147:268–276

    Article  Google Scholar 

  47. Debnath J, Majumder D, Biswas A et al (2018) Air quality assessment using weighted interval type-2 fuzzy inference system. Ecol Inform 46:133–146. https://doi.org/10.1016/j.ecoinf.2018.06.002

    Article  Google Scholar 

  48. Oguztimur S (2015) Why fuzzy analytic hierarchy process approach for transport. Why fuzzy analytic hierarchy process approach for transport problems? In: European Regional Science Association ERSA Conference Papers, Augasse 2–6, 1090 Vienna, Austria, ersa11, 438

  49. Yang D, Mak CM (2017) An assessment model of classroom acoustical environment based on fuzzy comprehensive evaluation method. Appl Acoust 127:292–296. https://doi.org/10.1016/j.apacoust.2017.06.022

    Article  Google Scholar 

  50. Yue Z, Jia Y (2008) Interval intuitionistic fuzzy comprehensive evaluation for the degree of reader’s satisfaction in university library. In: Proc 2008 Int Symp Comput Intell Des Isc 2008, vol 1, pp 146–149. https://doi.org/10.1109/ISCID.2008.105

  51. Li J, Tian Z (2010) Intuitionistic fuzzy comprehensive evaluation in decision-making problem. In: Proc—2010 7th Int Conf Fuzzy Syst Knowl Discov FSKD 2010, vol 1, pp 203–206. https://doi.org/10.1109/FSKD.2010.5569702

  52. Zhang H, He X, Mitri H (2019) Fuzzy comprehensive evaluation of virtual reality mine safety training system. Saf Sci 120:341–351. https://doi.org/10.1016/j.ssci.2019.07.009

    Article  Google Scholar 

  53. Li H, Dong K, Jiang H et al (2017) Risk assessment of China’s overseas oil refining investment using a fuzzy-grey comprehensive evaluation method. Sustainability. https://doi.org/10.3390/su9050696

    Article  Google Scholar 

  54. Zhao X, Qi Q, Li R (2010) The establishment and application of fuzzy comprehensive model with weight based on entropy technology for air quality assessment. Procedia Eng 7:217–222. https://doi.org/10.1016/j.proeng.2010.11.034

    Article  Google Scholar 

  55. Yang O, Jiang LZ, Liang C (2015) Weight calculation for seafarer competency evaluation based on intuitionistic fuzzy entropy. In: Proc—2014 Int Conf Mechatronics Control ICMC 2014, pp 210–213. https://doi.org/10.1109/ICMC.2014.7231549

  56. Wu X, Hu F (2020) Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol Indic 113:106243. https://doi.org/10.1016/j.ecolind.2020.106243

    Article  Google Scholar 

  57. Zhao Y, Di YQ (2009) Quantitative evaluation model based on objective weighting methods to evaluate the indoor air quality. In: 2009 Int Work Intell Syst Appl ISA 2009, pp 5–8. https://doi.org/10.1109/IWISA.2009.5073020

  58. Dammak F, Baccour L, Alimi AM (2015) The impact of criterion weights techniques in TOPSIS method of multi-criteria decision making in crisp and intuitionistic fuzzy domains. In: IEEE Int Conf Fuzzy Syst 2015. https://doi.org/10.1109/FUZZ-IEEE.2015.7338116

  59. Xiao Q, He R, Ma C, Zhang W (2019) Evaluation of urban taxi-carpooling matching schemes based on entropy weight fuzzy matter-element. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2019.105493

    Article  Google Scholar 

  60. Jin K, Zhang HC (2002) Comparison of AHP and reference point method in the environmental decision support model. IEEE Int Symp Electron Environ. https://doi.org/10.1109/isee.2002.1003278

    Article  Google Scholar 

  61. Liu DJ, Li L (2015) Application study of comprehensive forecasting model based on entropy weighting method on trend of PM2.5 concentration in Guangzhou, China. Int J Environ Res Public Health 12:7085–7099. https://doi.org/10.3390/ijerph120607085

    Article  Google Scholar 

  62. Shi LF (2010) Entropy based fuzzy comprehensive evaluation of university teachers. In: Proc—2010 1st Int Conf Pervasive Comput Signal Process Appl PCSPA 2010, pp 475–478. https://doi.org/10.1109/PCSPA.2010.120

  63. Xu W, Yu Y, Zhang Q (2018) An evaluation method of comprehensive product quality for customer satisfaction based on intuitionistic fuzzy number. Discret Dyn Nat Soc. https://doi.org/10.1155/2018/5385627

    Article  Google Scholar 

  64. Peibin G, Baojiang SUN, Gang LIU, Yong W (2012) Fuzzy comprehensive evaluation in well control risk assessment based on AHP: a case study. Adv Pet Explor Dev 4:13–18. https://doi.org/10.3968/j.aped.1925543820120401.758

    Article  Google Scholar 

  65. Dammak F, Baccour L, Alimi AM (2017) Interval valued intuitionistic fuzzy weight techniques for TOPSIS method. In: Proc IEEE/ACS Int Conf Comput Syst Appl AICCSA. https://doi.org/10.1109/AICCSA.2016.7945663

  66. Wang CC, Lin TW, Hu SS (2007) Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp J 13:304–315. https://doi.org/10.1108/13552540710824814

    Article  Google Scholar 

  67. Wen K-L, Chang T-C, You M-L (1998) The grey entropy and its application in weighting analysis. In: SMC’98 Conference Proceedings. 1998 IEEE international conference on systems, man, and cybernetics (Cat. No. 98CH36218). IEEE, pp 1842–1844

  68. Zhao H, Yao L, Mei G et al (2017) A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map. Entropy 19:1–16. https://doi.org/10.3390/e19080396

    Article  Google Scholar 

  69. Chou JR, Tsai HC (2009) On-line learning performance and computer anxiety measure for unemployed adult novices using a grey relation entropy method. Inf Process Manag 45:200–215. https://doi.org/10.1016/j.ipm.2008.12.001

    Article  Google Scholar 

  70. Ma F, He J, Ma J, Xia S (2017) Evaluation of urban green transportation planning based on central point triangle whiten weight function and entropy-AHP. Transp Res Procedia 25:3634–3644. https://doi.org/10.1016/j.trpro.2017.05.328

    Article  Google Scholar 

  71. Wang YM, Luo Y (2010) Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Math Comput Model 51:1–12. https://doi.org/10.1016/j.mcm.2009.07.016

    Article  MathSciNet  MATH  Google Scholar 

  72. Deng H, Yeh CH, Willis RJ (2000) Inter-company comparison using modified TOPSIS with objective weights. Comput Oper Res 27:963–973. https://doi.org/10.1016/S0305-0548(99)00069-6

    Article  MATH  Google Scholar 

  73. Abualigah LMQ (2019) Krill Herd algorithm. In: Feature selection and enhanced krill herd algorithm for text document clustering. Studies in computational intelligence, vol 816. Springer, Cham. https://doi.org/10.1007/978-3-030-10674-4_2

  74. Atanassov KT (1999) Intuitionistic fuzzy sets. Physica-Verlag HD, Heidelberg

    Book  Google Scholar 

  75. Hájek P, Olej V (2017) Intuitionistic neuro-fuzzy network with evolutionary adaptation. Evol Syst 8:35–47. https://doi.org/10.1007/s12530-016-9157-5

    Article  MATH  Google Scholar 

  76. Gramz J (2014) Using evolutionary programming to inccrease the accuracy of an ensemble model for energy forecasting. Appl Microbiol Biotechnol 85:2071–2079. https://doi.org/10.1016/j.bbapap.2013.06.007

    Article  Google Scholar 

  77. Hajek P, Olej V (2014) Defuzzification methods in intuitionistic fuzzy inference systems of Takagi-Sugeno type: the case of corporate bankruptcy prediction. In: 2014 11th Int Conf Fuzzy Syst Knowl Discov FSKD 2014, pp 232–236. https://doi.org/10.1109/FSKD.2014.6980838

  78. Zhang Y, Jiang W, Deng X (2019) Fault diagnosis method based on time domain weighted data aggregation and information fusion. Int J Distrib Sens Netw. https://doi.org/10.1177/1550147719875629

    Article  Google Scholar 

  79. Wei C, Zhang Y (2015) Entropy measures for interval-valued intuitionistic fuzzy sets and their application in group decision-making. Math Probl Eng. https://doi.org/10.1155/2015/563745

    Article  MathSciNet  MATH  Google Scholar 

  80. Kar S, Das S, Ghosh PK (2014) Applications of neuro fuzzy systems: a brief review and future outline. Appl Soft Comput J 15:243–259. https://doi.org/10.1016/j.asoc.2013.10.014

    Article  Google Scholar 

  81. Szmidt E, Kacprzyk J, Bujnowski P (2014) How to measure the amount of knowledge conveyed by Atanassov’s intuitionistic fuzzy sets. Inf Sci (NY) 257:276–285. https://doi.org/10.1016/j.ins.2012.12.046

    Article  MathSciNet  MATH  Google Scholar 

  82. Das S, Dutta B, Guha D (2014) Weight computation of criteria in a decision making problem by knowledge measure. In: Proc—2014 Int Conf Soft Comput Mach Intell ISCMI 2014, pp 88–93. https://doi.org/10.1109/ISCMI.2014.26

  83. Pal NR, Bustince H, Pagola M et al (2013) Uncertainties with Atanassov’s intuitionistic fuzzy sets: fuzziness and lack of knowledge. Inf Sci (NY) 228:61–74. https://doi.org/10.1016/j.ins.2012.11.016

    Article  MathSciNet  MATH  Google Scholar 

  84. Casillas J, Cordo O, Gonza A et al (2005) A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems. Eng Appl Artif Intell 18:279–296. https://doi.org/10.1016/j.engappai.2004.09.007

    Article  Google Scholar 

  85. Pauzi HM, Abdullah L (2019) Airborne particulate matter research: a review of forecasting methods. J Sustain Sci Manag 14:189–227

    Google Scholar 

  86. Dedovic MM, Avdakovic S, Turkovic I et al (2016) Forecasting PM10 concentrations using neural networks and system for improving air quality. In: 2016 XI International Symposium on Telecommunications (BIHTEL). IEEE, pp 1–6

  87. Biancofiore F, Busilacchio M, Verdecchia M et al (2017) Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos Pollut Res 8:652–659. https://doi.org/10.1016/j.apr.2016.12.014

    Article  Google Scholar 

  88. Grivas G, Chaloulakou A (2006) Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos Environ 40:1216–1229. https://doi.org/10.1016/j.atmosenv.2005.10.036

    Article  Google Scholar 

  89. Hadlocon LS, Zhao LY, Bohrer G et al (2015) Modeling of particulate matter dispersion from a poultry facility using AERMOD. J Air Waste Manag Assoc 65:206–217. https://doi.org/10.1080/10962247.2014.986306

    Article  Google Scholar 

  90. Koo YS, Kim ST, Cho JS, Jang YK (2012) Performance evaluation of the updated air quality forecasting system for Seoul predicting PM 10. Atmos Environ 58:56–69. https://doi.org/10.1016/j.atmosenv.2012.02.004

    Article  Google Scholar 

  91. You W, Zang Z, Zhang L et al (2016) A nonlinear model for estimating ground-level PM10 concentration in Xi’an using MODIS aerosol optical depth retrieval. Atmos Res 168:169–179. https://doi.org/10.1016/j.atmosres.2015.09.008

    Article  Google Scholar 

  92. Hoi KI, Yuen KV, Mok KM (2009) Prediction of daily averaged PM10 concentrations by statistical time-varying model. Atmos Environ 43:2579–2581. https://doi.org/10.1016/j.atmosenv.2009.02.020

    Article  Google Scholar 

  93. Dotse S-Q, Petra MI, Dagar L, De Silva LC (2017) Application of computational intelligence techniques to forecast daily PM 10 exceedances in Brunei Darussalam. Atmos Pollut Res. https://doi.org/10.1016/j.apr.2017.11.004

    Article  Google Scholar 

  94. You W, Zang Z, Zhang L et al (2015) Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sens Environ 168:276–285. https://doi.org/10.1016/j.rse.2015.07.020

    Article  Google Scholar 

  95. Anandkumar A, Nagarajan R, Prabakaran K, Rajaram R (2017) Trace metal dynamics and risk assessment in the commercially important marine shrimp species collected from the Miri coast, Sarawak, East Malaysia. Reg Stud Mar Sci 16:79–88. https://doi.org/10.1016/j.rsma.2017.08.007

    Article  Google Scholar 

  96. Umpi C (2011) A review of the centralized sewerage system for Kuching City. Disertation. Universiti of Malaysia Sarawak

  97. Hajek P, Olej V (2018) Interval-valued intuitionistic fuzzy inference system for supporting corporate financial decisions. In: IEEE Int Conf Fuzzy Syst 2018-July:0–6. https://doi.org/10.1109/FUZZ-IEEE.2018.8491620

  98. Celikyilmaz A, Türksen IB (2009) Modeling uncertainty with fuzzy logic. Springer, Berlin

    Book  Google Scholar 

  99. Chong E, Han C, Park FC (2017) Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies. Expert Syst Appl 83:187–205. https://doi.org/10.1016/j.eswa.2017.04.030

    Article  Google Scholar 

  100. Mok KM, Miranda AI, Yuen KV et al (2017) Selection of bias correction models for improving the daily PM10 forecasts of WRF-EURAD in Porto, Portugal. Atmos Pollut Res 8:628–639. https://doi.org/10.1016/j.apr.2016.12.010

    Article  Google Scholar 

  101. Debry E, Mallet V (2014) Ensemble forecasting with machine learning algorithms for ozone, nitrogendioxide and PM10 on the Prev’Air platform. Atmos Environ 91:71–74. https://doi.org/10.1016/j.atmosenv.2014.03.049

    Article  Google Scholar 

  102. Gao D, Wang GG, Pedrycz W (2020) Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Trans Fuzzy Syst 28:3265–3275. https://doi.org/10.1109/TFUZZ.2020.3003506

    Article  Google Scholar 

  103. Feng Y, Deb S, Wang GG, Alavi AH (2021) Monarch butterfly optimization: a comprehensive review. Expert Syst Appl 168:114418. https://doi.org/10.1016/j.eswa.2020.114418

    Article  Google Scholar 

  104. Wang GG, Deb S, Coelho LDS (2018) Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int J Bio-Inspired Comput 12:1–22. https://doi.org/10.1504/ijbic.2018.093328

    Article  Google Scholar 

  105. Wang GG, Deb S, Coelho LDS (2016) Elephant Herding optimization. In: Proc—2015 3rd Int Symp Comput Bus Intell ISCBI 2015, pp 1–5. https://doi.org/10.1109/ISCBI.2015.8

  106. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  107. Wei Y, Zhou Y, Luo Q (2021) Optimal reactive power dispatch problem using improved slime mould algorithm. SSRN Electron J 7:8742–8759. https://doi.org/10.2139/ssrn.3931679

    Article  Google Scholar 

  108. Jangir P, Heidari AA, Chen H (2021) Elitist non-dominated sorting Harris hawks optimization: framework and developments for multi-objective problems. Expert Syst Appl 186:115747. https://doi.org/10.1016/j.eswa.2021.115747

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the Department of Environment of Malaysia for the supplementary data.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazim Abdullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Pauzi, H., Abdullah, L. Intuitionistic fuzzy inference system with weighted comprehensive evaluation considering standard deviation-cosine entropy: a fused forecasting model. Neural Comput & Applic 34, 11977–11999 (2022). https://doi.org/10.1007/s00521-022-07082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07082-y

Keywords

Navigation