Skip to main content
Log in

Anomaly detection of industrial multi-sensor signals based on enhanced spatiotemporal features

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To improve the validity of industrial multi-sensor signals, anomaly detection has become a significant part of industrial signal processing. In practical measurement, industrial multi-sensor signals are mostly fluctuant, and the correlation between the front and back signals is uncertain. These increase the difficulty of the abnormal signal detection. For these problems, this paper proposes an anomaly detection method for industrial multi-sensor signals based on enhanced spatiotemporal features. Firstly, a series of signal preprocessing is performed relying on the characteristics of data set, so that the signals will be processed in a stable state. Then, a stack spatial–temporal autoencoder, which relies on the improved deep stack long short-term memory and autoencoder feature extractors, is proposed to extract features and to reconstruct signals. Next, a high-dimensional unsupervised clusterer is proposed to detect the abnormal signals. Finally, two case studies in magnetic flux leakage (MFL) signals and Tennessee Eastman (TE) benchmark are conducted. MFL signals are the actual signals collected from the experimental platform, and TE benchmark is a public data set. State-of-the-art comparison experiments on feature extraction and abnormal signal detection are performed, and the results show that the proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhong K, Han M, Han B (2020) Data-driven based fault prognosis for industrial systems: a concise overview. IEEE/CAA J Autom Sin 7(2):330

    MathSciNet  Google Scholar 

  2. Barra S, Carta SM, Corriga A, Podda AS, Recupero DR (2020) Deep learning and time series-to-image encoding for financial forecasting. IEEE/CAA J Autom Sin 7(3):683

    Google Scholar 

  3. Liu J, Qu F, Hong X, Zhang H (2018) A small-sample wind turbine fault detection method with synthetic fault data using generative adversarial nets. IEEE Trans Ind Inform 15(7):3877–3888

    Google Scholar 

  4. Han J, Zhang H, Wang Y, Sun X (2018) Robust fault detection for switched fuzzy systems with unknown input. IEEE Trans Cybern 48(11):3056

    Google Scholar 

  5. Feng J, Li F, Lu S, Liu J, Ma D (2017) Injurious or noninjurious defect identification from mfl images in pipeline inspection using convolutional neural network. IEEE Trans Instrum Meas 66(7):1883

    Google Scholar 

  6. Zhang H, Li Y, Lv Z, Sangaiah AK, Huang T (2020) A real-time and ubiquitous network attack detection based on deep belief network and support vector machine. IEEE/CAA J Autom Sin 7(3):790

    Google Scholar 

  7. Jufri FH, Oh S, Jung J (2019) Development of Photovoltaic abnormal condition detection system using combined regression and Support Vector. Energy 176:457. https://doi.org/10.1016/j.energy.2019.04.016

    Article  Google Scholar 

  8. Zhang H, Jiang L, Liu J, Qu F (2020) IEEE Transactions on Automation Science and Engineering, IEEE Transactions on Automation Science and Engineering pp 1–10

  9. Song Z, Liu Z (2019) Abnormal detection method of industrial control system based on behavior model. Comput Secur 84:166

    Google Scholar 

  10. Gao S, Zhou M, Wang Y, Cheng J, Yachi H, Wang J (2019) IEEE transactions on neural networks and learning systems. IEEE Trans Neural Netw Learn Syst 30(2):601

    Google Scholar 

  11. Sheikhan M, Jadidi Z (2014) Flow-based anomaly detection in high-speed links using modified GSA-optimized neural network. Neural Comput Appl 24(3):599

    Google Scholar 

  12. Wang J, Xia L, Hu X, Xiao Y (2018) Abnormal event detection with semi-supervised sparse topic model. Neural Comput Appl 31(3):1

    Google Scholar 

  13. Wang Y, Lee L, Xue B, Wang L, Song M, Yu C, Li S, Chang C (2018) A posteriori hyperspectral anomaly detection for unlabeled classification. IEEE Trans Geosci Remote Sens 56(6):3091

    Google Scholar 

  14. Liu J, Wang P, Jiang D, Nan J, Zhu W (2020) An integrated data-driven framework for surface water quality anomaly detection and early warning. J Clean Prod 251:1

    Google Scholar 

  15. Yuan Y, Feng Y, Lu X (2017) Statistical hypothesis detector for abnormal event detection in crowded scenes. IEEE Trans Cybern 47(11):3597

    Google Scholar 

  16. Andrysiak T (2020) Sparse representation and overcomplete dictionary learning for anomaly detection in electrocardiograms. Neural Comput Appl 32(5):1269

    Google Scholar 

  17. Wang B, Mao Z (2019) Outlier detection based on Gaussian process with application to industrial processes. Appl Soft Comput 76:505. https://doi.org/10.1016/j.asoc.2018.12.029

    Article  Google Scholar 

  18. Zheng S, Zhu Y, Li D, Cao Z, Deng Q, Phoon K (2020) Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning. Geosci Front. https://doi.org/10.1016/j.gsf.2020.03.017

    Article  Google Scholar 

  19. Gong D, Liu L, Le V, Saha B, Mansour MR, Venkatesh S, Hengel AVD (2020) Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection. In: 2019 IEEE/CVF international conference on computer vision (ICCV) pp 1705–1714

  20. Luo X, Zhou M, Li S, Hu L, Shang M (2020) Non-negativity constrained missing data estimation for high-dimensional and sparse matrices from industrial applications. IEEE Trans Cybern 50(5):1844

    Google Scholar 

  21. Cai J, Zhang X, Xie S (2019) Video crowd detection and abnormal behavior model detection based on machine learning method. Neural Comput Appl 31(1):175

    Google Scholar 

  22. Fu M, Liu J, Zang D, Lu S (2020) Anomaly detection of complex MFL measurements using low-rank recovery in pipeline transportation inspection, IEEE Trans Instrum Meas, pp 1–12

  23. Li F, Zhang X, Zhang L, Jiang D, Zhang Y (2018) Exploiting structured sparsity for hyperspectral anomaly detection. IEEE Trans Geoence Remote Sens 56(7):1

    Google Scholar 

  24. Renstrom N, Bangalore P, Highcock E (2020) System-wide anomaly detection in wind turbines using deep autoencoders. Renew Energy 157:647

    Google Scholar 

  25. Zhao H, Liu H, Hu W, Yan X (2018) Anomaly detection and fault analysis of wind turbine components based on deep learning network. Renew Energy 127:825

    Google Scholar 

  26. Cai Z, Zhu W (2018) Feature selection for multi-label classification using neighborhood preservation. IEEE/CAA J Autom Sin 5(1):320

    MathSciNet  Google Scholar 

  27. Liu H, Zhou M, Liu Q (2019) An embedded feature selection method for imbalanced data classification. IEEE/CAA J Autom Sin 6(3):703

    Google Scholar 

  28. Nawaratne R, Alahakoon D, De Silva D, Yu X (2020) Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Trans Industr Inf 16(1):393

    Google Scholar 

  29. Lee S, Kim HG, Ro YM (2020) BMAN: bidirectional multi-scale aggregation networks for abnormal event detection. IEEE Trans Image Process 29:2395

    Google Scholar 

  30. Chu W, Xue H, Yao C, Cai D (2019) Sparse coding guided spatiotemporal feature learning for abnormal event detection in large videos. IEEE Trans Multimed 21(1):246

    Google Scholar 

  31. Jia C, Shao M, Li S, Zhao H, Fu Y (2018) Stacked denoising tensor auto-encoder for action recognition with spatiotemporal corruptions. IEEE Trans Image Process 27(4):1878

    MathSciNet  MATH  Google Scholar 

  32. Trung-Nghia L, Akihiro S (2017) Video salient object detection using spatiotemporal deep features. IEEE Trans Image Process 27(10):5002

    MathSciNet  Google Scholar 

  33. Bappy JH, Simons C, Nataraj L, Manjunath BS, Roy-Chowdhury AK (2019) Hybrid LSTM and encoder decoder architecture for detection of image forgeries. IEEE Trans Image Process 28(7):3286

    MathSciNet  MATH  Google Scholar 

  34. Tian Y, Zhang K, Li J, Lin X, Yang B (2018) LSTM-based traffic flow prediction with missing data. Neurocomputing 318:297. https://doi.org/10.1016/j.neucom.2018.08.067

    Article  Google Scholar 

  35. Dotti D, Popa M, Asteriadis S (2020) A hierarchical autoencoder learning model for path prediction and abnormality detection. Pattern Recognit Lett 130:216. https://doi.org/10.1016/j.patrec.2019.06.030

    Article  Google Scholar 

  36. Lin Y, Wang J (2020) Probabilistic deep autoencoder for power system measurement outlier detection and reconstruction. IEEE Trans Smart Grid 11(2):1796

    Google Scholar 

  37. Principi E, Rossetti D, Squartini S, Piazza F (2019) Unsupervised electric motor fault detection by using deep autoencoders. IEEE/CAA J Autom Sin 6(2):441

    Google Scholar 

  38. Radovanovic M, Nanopoulos A, Ivanovic M (2015) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng 27(5):1369

    Google Scholar 

  39. Wang S, Wang H, Xiang S, Yu L (2019) Densely connected convolutional network block based autoencoder for panorama map compression. Signal Process: Image Commun 80:1

    Google Scholar 

  40. Abiri N, Linse B, Edén P, Ohlsson M (2019) Establishing strong imputation performance of a denoising autoencoder in a wide range of missing data problems. Neurocomputing 365:137

    Google Scholar 

  41. Wang J, Peng B, Zhang X (2018) Using a stacked residual LSTM model for sentiment intensity prediction. Neurocomputing 322:93

    Google Scholar 

  42. Chong YS, Tay YH (2017) Abnormal event detection in videos using spatiotemporal autoencoder. In: international symposium on neural networks (Springer), pp 189–196

  43. Zhang H, Cui L, Zhang X, Luo Y (2011) Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method. IEEE Trans Neural Netw 22(12):2226

    Google Scholar 

  44. Xiong H, Wu J, Chen J (2009) K-Means clustering versus validation measures: a data-distribution perspective. IEEE Trans Syst, Man, Cybern Part B (Cybernetics) 39(2):318

    Google Scholar 

  45. Fawcett T (2005) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861

    Google Scholar 

  46. Li F, Feng J, Zhang H, Liu J, Lu S, Ma D (2018) Quick reconstruction of arbitrary pipeline defect profiles from MFL measurements employing modified harmony search algorithm. IEEE Trans Instrum Meas 67(9):2200

    Google Scholar 

  47. Lu S, Feng J, Zhang H, Liu J, Wu Z (2019) An estimation method of defect size from MFL image using visual transformation convolutional neural network. IEEE Trans Industr Inf 15(1):213

    Google Scholar 

  48. Fu M, Liu J, Zhang H, Lu S (2020) Multi-sensor fusion for magnetic flux leakage defect characterization under information incompletion. IEEE Trans Ind Electron, pp 1–11

  49. Zhang W, Zhang H, Liu J, Li K, Yang D, Tian H (2017) Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system. IEEE/CAA J Autom Sin 4(3):520

    Google Scholar 

  50. Liu J, Fu M, Liu F, Feng J, Cui K (2017) Window feature-based two-stage defect identification using magnetic flux leakage measurements. IEEE Trans Instrum Meas 67(1):12

    Google Scholar 

  51. Zhou X, Hu Y, Liang W, Ma J, Jin Q (2020) Variational LSTM enhanced anomaly detection for industrial big data. IEEE Trans Ind Inform. https://doi.org/10.1109/TII.2020.3022432

    Article  Google Scholar 

  52. Chen Z, Cao Y, Ding SX, Zhang K, Koenings T, Peng T, Yang C, Gui W (2019) A distributed canonical correlation analysis-based fault detection method for plant-wide process monitoring. IEEE Trans Industr Inf 15(5):2710

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFF0108800), the National Natural Science Foundation of China (61973071, 61627809), and the Liaoning Natural Science Foundation of China (2019-KF-03-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhai Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Xu, H., Liu, J. et al. Anomaly detection of industrial multi-sensor signals based on enhanced spatiotemporal features. Neural Comput & Applic 34, 8465–8477 (2022). https://doi.org/10.1007/s00521-022-07101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07101-y

Keywords

Navigation