Skip to main content
Log in

Distributed algorithm for mixed equilibrium problems with event-triggered strategy

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A new iterative method based on the event-triggered strategy for finding a solution to a mixed equilibrium problem (MEP) is introduced in this paper. The target of the MEP is to find a point in a closed convex set, guaranteeing that the sum of bifunctions about this point is non-negative. To decrease the cost of communication, the MEP is investigated with an event-triggered protocol. Furthermore, it is the first attempt to combine the MEP with an event-triggered strategy. Although there exist difficulties caused by the asymmetry of the network structure associated with directed graphs, nonlinearity and strong coupling of the MEP, the novel algorithm for directed graphs, two event-triggered conditions and the range of the solution associated with the MEP are obtained to handle these challenges. Under the directed time-varying graph, the designed algorithm can converge to a solution to the MEP and reach average consensus. Finally, a numerical example is presented to illustrate the effectiveness of the above algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang D, Feng G, Shi Y, Srinivasan D (2021) Physical safety and cyber security analysis of multi-agent systems: a survey of recent advances. IEEE/CAA J Autom Sin 8(2):319–333. https://doi.org/10.1109/JAS.2021.1003820

    Article  MathSciNet  Google Scholar 

  2. Chen C, Xie K, Lewis FL, Xie S, Fierro R (2020) Adaptive synchronization of multi-agent systems with resilience to communication link faults. Automatica 111:108636. https://doi.org/10.1016/j.automatica.2019.108636

    Article  MathSciNet  MATH  Google Scholar 

  3. Jin X, Lü S, Deng C, Chadli M (2021) Distributed adaptive security consensus control for a class of multi-agent systems under network decay and intermittent attacks. Inf Sci 547:88–102. https://doi.org/10.1016/j.ins.2020.08.013

    Article  MathSciNet  MATH  Google Scholar 

  4. Li D, Ge SS, He W, Ma G, Xie L (2019) Multilayer formation control of multi-agent systems. Automatica 109:108558. https://doi.org/10.1016/j.automatica.2019.108558

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorri A, Kanhere SS, Jurdak R (2018) Multi-agent systems: a survey. IEEE Access 6:28573–28593. https://doi.org/10.1109/ACCESS.2018.2831228

    Article  Google Scholar 

  6. Wen J, Xu P, Wang C, Xie G, Gao Y (2019) Distributed event-triggered circle formation control for multi-agent systems with limited communication bandwidth. Neurocomputing 358:211–221. https://doi.org/10.1016/j.neucom.2019.05.029

    Article  Google Scholar 

  7. González-Briones A, De La Prieta F, Mohamad MS, Omatu S, Corchado JM (2018) Multi-agent systems applications in energy optimization problems: a state-of-the-art review. Energies 11(8):1928. https://doi.org/10.3390/en11081928

    Article  Google Scholar 

  8. Li R, Yang GH (2020) Distributed optimization for a class of uncertain mimo nonlinear multi-agent systems with arbitrary relative degree. Inf Sci 506:58–77. https://doi.org/10.1016/j.ins.2019.08.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Tan H, Huang Z, Wu M (2019) Data-based predictive control for networked non-linear multi-agent systems consensus tracking via cloud computing. IET Control Theory Appl 13(5):683–692. https://doi.org/10.1049/iet-cta.2018.6144

    Article  MathSciNet  MATH  Google Scholar 

  10. Jin X, Lü S, Yu J (2021) Adaptive nn-based consensus for a class of nonlinear multiagent systems with actuator faults and faulty networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3053112

  11. Sun S, Cao Z, Zhu H, Zhao J (2019) A survey of optimization methods from a machine learning perspective. IEEE Trans Cybern 50(8):3668–3681. https://doi.org/10.1109/TCYB.2019.2950779

    Article  Google Scholar 

  12. Li F, You B, Zhong C (2018) Multiple equilibrium points in global attractors for some p-Laplacian equations. Appl Anal 97(9):1591–1599. https://doi.org/10.1080/00036811.2017.1322199

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma J, Xu M, Meng Q, Cheng L (2020) Ridesharing user equilibrium problem under OD-based surge pricing strategy. Transp Res Part B Methodol 134:1–24. https://doi.org/10.1016/j.trb.2020.02.001

    Article  Google Scholar 

  14. Chen Y, Jing Z (2019) Multiple energies retailing based on Stackelberg game model. Energy Proc 158:2695–2700. https://doi.org/10.1016/j.egypro.2019.02.024

    Article  Google Scholar 

  15. Cotrina J, Svensson A (2021) The finite intersection property for equilibrium problems. J Global Optim 79(4):941–957. https://doi.org/10.1007/s10898-020-00961-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Censor Y, Gibali A, Reich S (2012) Algorithms for the split variational inequality problem. Numer Algorithms 59(2):301–323. https://doi.org/10.1007/s11075-011-9490-5

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu R, Fang YP (2013) Mixed equilibrium problems with z*-bifunctions and least element problems in Banach lattices. Optim Lett 7(5):933–947. https://doi.org/10.1007/s11590-012-0473-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Van Hung N, Tam VM, Nguyen T, O’Regan D (2020) Regularized gap functions and error bounds for generalized mixed weak vector quasivariational inequality problems in fuzzy environments. Fuzzy Sets Syst 400:162–176. https://doi.org/10.1016/j.fss.2019.09.015

    Article  MathSciNet  MATH  Google Scholar 

  19. Alakoya TO, Taiwo A, Mewomo OT, Cho YJ (2021) An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann Dell’Univ’di Ferrara 67(1):1–31. https://doi.org/10.1007/s11565-020-00354-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma X, He X (2021) Period-to-period toll adjustment schemes for mixed traffic with time-varying electric vehicle penetration. Transp Res Part C Emerg Technol 129:103237. https://doi.org/10.1016/j.trc.2021.103237

    Article  Google Scholar 

  21. Oyewole AKMOOK (2021) A multi step inertial algorithm for approximating a common solution of split generalized mixed equilibrium and minimization problems. Ricer Mate. https://doi.org/10.1007/s11587-021-00624-x

  22. Farid M (2021) Two algorithms for solving mixed equilibrium problems and fixed point problems in Hilbert spaces. Ann Univ Ferrara 67:253–268. https://doi.org/10.1007/s11565-021-00380-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu K, Jing G, Wang L (2019) A distributed algorithm for solving mixed equilibrium problems. Automatica 105:246–253. https://doi.org/10.1016/j.automatica.2019.03.015

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang Z, He H, Jiang GP, Cao J (2020) Distributed tracking in heterogeneous networks with asynchronous sampled-data control. IEEE Trans Ind Inform 16:12–18. https://doi.org/10.1109/TII.2019.2958652

    Article  Google Scholar 

  25. Wang Z, He H, Jiang GP, Cao J (2021) Quasi-synchronization in heterogeneous harmonic oscillators with continuous and sampled coupling. IEEE Trans Syst Man Cybern Syst 51:1267–1277. https://doi.org/10.1109/TSMC.2019.2896022

    Article  Google Scholar 

  26. Iusem AN, Sosa W (2003) New existence results for equilibrium problems. Nonlinear Anal Theory Methods Appl 52(2):621–635. https://doi.org/10.1016/S0362-546X(02)00154-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Sinkhorn R (1964) A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann Math Stat 35(2):876–879. https://doi.org/10.1214/aoms/1177703591

    Article  MathSciNet  MATH  Google Scholar 

  28. Gharesifard B, Cortés J (2012) Distributed strategies for generating weight-balanced and doubly stochastic digraphs. Eur J Control 18(6):539–557. https://doi.org/10.3166/EJC.18.539-557

    Article  MathSciNet  MATH  Google Scholar 

  29. Di Lorenzo P, Scutari G (2016) Next: In-network nonconvex optimization. IEEE Trans Signal Inform Process Over Netw 2(2):120–136. https://doi.org/10.1109/TSIPN.2016.2524588

    Article  MathSciNet  Google Scholar 

  30. Zhu M, Martínez S (2011) On distributed convex optimization under inequality and equality constraints. IEEE Trans Autom Control 57(1):151–164. https://doi.org/10.1109/TAC.2011.2167817

    Article  MathSciNet  MATH  Google Scholar 

  31. Robbins H, Siegmund D (1971) A convergence theorem for non negative almost supermartingales and some applications. In: Optimizing methods in statistics. Elsevier, Amsterdam, pp 233–257. https://doi.org/10.1016/B978-0-12-604550-5.50015-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Xia, L. & Su, H. Distributed algorithm for mixed equilibrium problems with event-triggered strategy. Neural Comput & Applic 34, 16463–16472 (2022). https://doi.org/10.1007/s00521-022-07115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07115-6

Keywords

Navigation