Skip to main content
Log in

Filter pruning via expectation-maximization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The redundancy in convolutional neural networks (CNNs) causes a significant number of extra parameters resulting in increased computation and less diverse filters. In this paper, we introduce filter pruning via expectation-maximization (FPEM) to trim redundant structures and improve the diversity of remaining structures. Our method is designed based on the discovery that the filter diversity of pruned networks is positively correlated with its performance. The expectation step divides filters into groups by maximum likelihood layer-wisely, and averages the output feature maps for each cluster. The maximization step calculates the likelihood estimation of clusters and formulates a loss function to make the distributions in the same cluster consistent. After training, the intra-cluster redundant filters can be trimmed and only intra-cluster diverse filters are retained. Experiments conducted on CIFAR-10 have outperformed the corresponding full models. On ImageNet ILSVRC12, FPEM reduces \(46.5\%\) FLOPs on ResNet-50 with only \(0.36\%\) Top-1 accuracy decrease, which advances the state-of-arts. In particular, the FPEM offers strong generalization performance on the object detection task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Denil M, Shakibi B, Dinh L, Ranzato M, De Freitas N (2013) Predicting parameters in deep learning. In: NIPS, pp 2148–2156

  2. Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within convolutional networks for efficient evaluation. In: NIPS, pp 1269–1277

  3. Ding X, Ding G, Guo Y, Han J (2019) Centripetal sgd for pruning very deep convolutional networks with complicated structure. In: CVPR, pp 4943–4953

  4. Dong X, Huang J, Yang Y, Yan S (2017) More is less: A more complicated network with less inference complexity. In: CVPR, pp 5840–5848

  5. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  6. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp 580–587

  7. Gu J, Li C, Zhang B, Han J, Cao X, Liu J, Doermann D (2019) Projection convolutional neural networks for 1-bit cnns via discrete back propagation. In: AAAI, vol 33, pp 8344–8351

  8. Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: NIPS, pp 1135–1143

  9. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778

  10. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: ECCV, pp 630–645

  11. He Y, Kang G, Dong X, Fu Y, Yang Y (2018) Soft filter pruning for accelerating deep convolutional neural networks. In: IJCAI, pp 1–8

  12. He Y, Liu P, Wang Z, Hu Z, Yang Y (2019) Filter pruning via geometric median for deep convolutional neural networks acceleration. In: CVPR, pp 4340–4349

  13. He Y, Zhang X, Sun J (2017) Channel pruning for accelerating very deep neural networks. In: ICCV, pp 1389–1397

  14. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531

  15. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML, pp 448–456

  16. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images. Technical report, Citeseer

  17. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS, pp 1097–1105

  18. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: NIPS, pp 598–605

  19. Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2016) Pruning filters for efficient convnets. In: ICLR, pp 1–13

  20. Li Y, Lin S, Liu J, Ye Q, Wang M, Chao F, Yang F, Ma J, Tian Q, Ji R (2021) Towards compact cnns via collaborative compression. In: CVPR, pp 6438–6447

  21. Lin M, Ji R, Wang Y, Zhang Y, Zhang B, Tian Y, Shao L (2020) Hrank: Filter pruning using high-rank feature map. In: CVPR, pp 1529–1538

  22. Lin M, Ji R, Zhang Y, Zhang B, Wu Y, Tian Y (2020) Channel pruning via automatic structure search. In: IJCAI, pp 1–7

  23. Lin S, Ji R, Li Y, Deng C, Li X (2019) Toward compact convnets via structure-sparsity regularized filter pruning. IEEE Trans Neural Netw Learn Syst 31(2):574–588

    Article  MathSciNet  Google Scholar 

  24. Lin S, Ji R, Li Y, Wu Y, Huang F, Zhang B (2018) Accelerating convolutional networks via global & dynamic filter pruning. In: IJCAI, pp 2425–2432

  25. Lin S, Ji R, Yan C, Zhang B, Cao L, Ye Q, Huang F, Doermann D (2019) Towards optimal structured cnn pruning via generative adversarial learning. In: CVPR, pp 2790–2799

  26. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: ECCV, pp 740–755

  27. Liu J, Zhuang B, Zhuang Z, Guo Y, Huang J, Zhu J, Tan M (2021) Discrimination-aware network pruning for deep model compression. IEEE Trans Pattern Anal Mach Intell

  28. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: Single shot multibox detector. In: ECCV, pp 21–37

  29. Liu Z, Mu H, Zhang X, Guo Z, Yang X, Cheng KT, Sun J (2019) Metapruning: meta learning for automatic neural network channel pruning. In: ICCV, pp 3296–3305

  30. Luo JH, Wu J, Lin W (2017) Thinet: A filter level pruning method for deep neural network compression. In: ICCV, pp 5058–5066

  31. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML, pp 807–814

  32. Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: Imagenet classification using binary convolutional neural networks. In: ECCV, pp 525–542

  33. Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y (2015) Fitnets: Hints for thin deep nets. In: ICLR, pp 1–13

  34. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  35. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR

  36. Wang X, Zhang B, Li C, Ji R, Han J, Cao X, Liu J (2018) Modulated convolutional networks. In: CVPR, pp 840–848

  37. Xie Z, Zhu L, Zhao L, Tao B, Liu L, Tao W (2020) Localization-aware channel pruning for object detection. Neurocomputing 403:400–408

    Article  Google Scholar 

  38. Xu S, Chen H, Gong X, Liu K, Lü J, Zhang B (2021) Efficient structured pruning based on deep feature stabilization. Neural Comput Appl 1–12

  39. Xu S, Li Y, Zhao J, Zhang B, Guo G (2021) Poem: 1-bit point-wise operations based on expectation-maximization for efficient point cloud processing. In: BMVC

  40. Xu S, Zhao J, Lu J, Zhang B, Han S, Doermann D (2021) Layer-wise searching for 1-bit detectors. In: CVPR, pp 5682–5691

  41. Xuan G, Zhang W, Chai P (2001) Em algorithms of gaussian mixture model and hidden markov model. In: Proceedings 2001 international conference on image processing (Cat. No. 01CH37205), vol 1. IEEE, pp 145–148

  42. Yu R, Li A, Chen CF, Lai JH, Morariu VI, Han X, Gao M, Lin CY, Davis LS (2018) Nisp: pruning networks using neuron importance score propagation. In: CVPR, pp 9194–9203

  43. Zhang X, Zou J, Ming X, He K, Sun J (2015) Efficient and accurate approximations of nonlinear convolutional networks. In: CVPR, pp 1984–1992

  44. Zhao J, Xu S, Zhang B, Gu J, Doermann D, Guo G (2021) Towards compact 1-bit cnns via bayesian learning. Int J Comput Vis 1–25

Download references

Acknowledgements

This study was supported by Grant NO.2019JZZY011101 from the Key Research and Development Program of Shandong Province to Dianmin Sun. This work was supported in part by the National Natural Science Foundation of China under Grant 62076016, 61876015 and 92067204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sheng Xu and Yanjing Li: co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Li, Y., Yang, L. et al. Filter pruning via expectation-maximization. Neural Comput & Applic 34, 12807–12818 (2022). https://doi.org/10.1007/s00521-022-07127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07127-2

Keywords

Navigation