Skip to main content
Log in

Stochastic stability for delayed semi-Markovian genetic regulatory networks with partly unknown transition rates by employing new integral inequalities

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper discusses the stochastic stability for genetic regulatory networks (GRNs) with semi-Markov switching and time-varying delays where the transition rates (TRs) of the modes are partially unknown. By proposing vectors with three Legendre polynomials and three weighted Legendre polynomials, two free-matrix-based integral inequalities are derived, which involves several existing ones as their special cases. Then, two appropriate Lyapunov–Krasovskii functionals (LKFs) are established to be apt for the acquired inequalities. By introducing some free-weight matrices and utilizing the acquired integral inequalities, new sufficient conditions are proposed to ensure the stochastically asymptotic stability of analyzed networks in the mean-square sense. Finally, two simulation examples are put forward to show the effectiveness and less conservatism of the presented criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li Z, Chen D, Liu Y, Zhao Y (2016) New delay-dependent stability criteria of genetic regulatory networks subject to variable delays. Neurocomputing 207:763–771

    Article  Google Scholar 

  2. Gu K (2000) An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp 2805–2810

  3. Senthilraj S, Raja R, Zhu Q, Samidurai R, Zhou H (2016) Delay-dependent asymptotic stability criteria for genetic regulatory networks with impulsive perturbations. Neurocomputing 214:981–990

    Article  Google Scholar 

  4. Wang W, Zhong S, Nguang SK, Liu F (2013) Robust delay-probability-distribution-dependent stability of uncertain genetic regulatory networks with variable delays. Neurocomputing 119:153–164

    Article  Google Scholar 

  5. Park MJ, Ko JW, Jeong CK (2011) Reciprocally convex approach to stability of systems with variable delays. Automatica 47(1):235–238

    Article  MathSciNet  Google Scholar 

  6. Wang W, Zhong S, Liu F, Cheng J (2014) Robust delay-probability-distribution-dependent stability of uncertain stochastic genetic regulatory networks with random discrete delays and distributed delays. Int J Robust Nonlinear Control 24(16):2574–2596

    Article  MathSciNet  Google Scholar 

  7. Wang L, Luo Z-P, Yang H-L, Cao J (2016) Stability of genetic regulatory networks based on switched systems and mixed time-delays. Math Biosci 278:94–99

    Article  MathSciNet  Google Scholar 

  8. Zhang X, Li R, Han C, Yao R (2016) Robust stability analysis of uncertain genetic regulatory networks with mixed time delays. Int J Mach Learn Cyber 7(6):1005–1022

    Article  Google Scholar 

  9. Yu T, Liu J, Zeng Y, Zhang X, Zeng Q, Wu L (2018) Stability analysis of genetic regulatory networks with switching parameters and time delays. IEEE Trans Neural Netw Learn Syst 29(7):3047–3058

    MathSciNet  Google Scholar 

  10. Wang W, Nguang SK, Zhong S, Liu F (2014) Robust stability analysis of stochastic delayed genetic regulatory networks with polytopic uncertainties and linear fractional parametric uncertainties. Commun Nonlinear Sci Numer Simulat 19:1569–1581

    Article  MathSciNet  Google Scholar 

  11. Zhang X, Han Y, Wu L, Zou J (2016) M-matrix-based globally asymptotic stability criteria for genetic regulatory networks with variable discrete and unbounded distributed delays. Neurocomputing 174B:1060–1069

    Article  Google Scholar 

  12. Qiu J, Sun K, Yang C, Chen X, Chen X, Zhang A (2017) Finite-time stability of genetic regulatory networks with impulsive effects. Neurocomputing 219:9–14

    Article  Google Scholar 

  13. Li L, Yang Y (2015) On sampled-data control for stabilization of genetic regulatory networks with leakage delays. Neurocomputing 149C:1225–1231

    Article  Google Scholar 

  14. Zhang H, Zhao M, Wang Z, Wu Z (2014) Adaptive synchronization of an uncertain coupling complex network with time-delay. Nonlinear Dyn 77(3):643–653

    Article  MathSciNet  Google Scholar 

  15. Zhang H, Wang Z, Liu D (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans Neural Netw Learning Syst 25(7):1229–1261

    Article  Google Scholar 

  16. Lakshmanan S, Rihan FA, Rakkiyappan R, Park JH (2014) Stability analysis of the differential genetic regulatory networks model with variable delays and Markovian jumping parameters. Nonlinear Anal Hybrid Syst 14:1–15

    Article  MathSciNet  Google Scholar 

  17. Ratnavelu K, Kalpana M, Balasubramaniam P (2016) Asymptotic stability of Markovian switching genetic regulatory networks with leakage and mode-dependent time delays. J Franklin Inst 353(7):1615–1638

    Article  MathSciNet  Google Scholar 

  18. Revathi VM, Balasubramaniam P, Ratnavelu K (2014) Mode-dependent H∞ filtering for stochastic Markovian switching genetic regulatory networks with leakage and variable delays. Circuits Syst Signal Process 33(11):3349–3388

    Article  Google Scholar 

  19. Wei Y, Park JH, Karimi HR, Tian Y-C, Jung H (2018) Improved stability and stabilization results for stochastic synchronization of continuous-time semi-Markovian jump neural networks with variable delay. IEEE Trans Neural Netw Learn Syst 29(6):2488–2501

    Article  MathSciNet  Google Scholar 

  20. Zhang H, Qiu Z, Liu X, Xiong L (2020) Stochastic robust finite-time boundedness for semi-Markov jump uncertain neutral-type neural networks with mixed time-varying delays via a generalized reciprocally convex combination inequality. Int J Robust Nonlinear Control 30(5):2001–2019

    Article  MathSciNet  Google Scholar 

  21. Zhang X, Yu A, Zhang G (2013) M-matrix-based delay-range-dependent global asymptotical stability criterion for genetic regulatory networks with time-varying delays. Neurocomputing 113:8–15

    Article  Google Scholar 

  22. Liu T, Zhang X, Gao X (2016) Stability analysis for continuous-time and discrete-time genetic regulatory net- works with delays. Appl Math Comput 274:628–643

    MathSciNet  MATH  Google Scholar 

  23. Zhang H, Wang J, Wang Z, Liang H (2017) Sampled-data synchronization analysis of Markovian neural net- works with generally incomplete transition rates. IEEE Trans Neural Netw Learning Syst 28(3):740–752

    Article  MathSciNet  Google Scholar 

  24. Zhang R, Zeng D, Liu X, Zhong S, Cheng J (2019) New results on stability analysis for delayed Markovian generalized neural networks with partly unknown transition rates. IEEE Trans Neural Netw Learning Syst 30(11):3384–3395

    Article  MathSciNet  Google Scholar 

  25. Briat C (2011) Convergence and equivalence results for the Jensen’s inequality: application to time-delay and sampled-data systems. IEEE Trans Autom Control 56(7):1660–1665

    Article  MathSciNet  Google Scholar 

  26. Seuret A, Gouaisbaut F (2013) Wirtinger-based integral inequality: application to time-delay systems. Auto- matica 49(9):2860–2866

    MathSciNet  MATH  Google Scholar 

  27. Park MJ, Kwon OM, Park JH, Lee SM, Cha EJ (2015) Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica 55:204–208

    Article  MathSciNet  Google Scholar 

  28. Seuret A, Gouaisbaut F (2014) Complete quadratic Lyapunov functionals using Bessel–Legendre inequality. In: Proceedings of European Control Conference, Strasbourg, France, pp 448–453

  29. Park PG, Lee W, Lee SY (2015) Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J Franklin Inst 352(4):1378–1396

    Article  MathSciNet  Google Scholar 

  30. Seuret A, Gouaisbaut F (2015) Hierarchy of LMI conditions for the stability analysis of time delay systems. Syst Control Lett 81(1):1–7

    Article  MathSciNet  Google Scholar 

  31. Ji M-D, He Y, Zhang C-K, Wu M (2014) Novel stability criteria for recurrent neural networks with variable delay. Neurocomputing 138:383–391

    Article  Google Scholar 

  32. Zhang C-K, He Y, Jiang L, Wu M (2016) Stability analysis for delayed neural networks considering both conservativeness and complexity. IEEE Trans Neural Netw Learn Syst 27(7):1486–1501

    Article  MathSciNet  Google Scholar 

  33. Liu Y, Hu L-S, Shi P (2012) A novel approach on stabilization for linear systems with variable input delay. Appl Math Comput 218(10):5937–5947

    MathSciNet  MATH  Google Scholar 

  34. Hu W, Li C, Wu S (2012) Stochastic robust stability for neutral-type impulsive interval neural networks with distributed time-varying delays. Neural Comput Appl 21(8):1947–1960

    Article  Google Scholar 

  35. Zhang W, Tang Y, Wu X, Fang J-A (2014) Stochastic stability of switched genetic regulatory networks with time-varying delays. IEEE Trans Nanobiosci 13(3):336–342

    Article  Google Scholar 

  36. Wang W, Wang Y, Nguang SK, Zhong S, Liu F (2016) Delay partition method for the robust stability of uncertain genetic regulatory networks with variable delays. Neurocomputing 173(3):899–911

    Article  Google Scholar 

  37. Wang W, Zhong S, Liu F (2012) New delay-dependent stability criteria for uncertain genetic regulatory networks with variable delays. Neurocomputing 93:19–26

    Article  Google Scholar 

  38. Moradi H, Majd VJ (2016) Robust control of uncertain nonlinear switched genetic regulatory networks with time delays: A redesign approach. Math Biosci 275:10–17

    Article  MathSciNet  Google Scholar 

  39. Liu Y, Guo B-Z, Park JH, Lee S-M (2018) Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control. IEEE Trans Neural Netw Learn Syst 29(1):118–128

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62173081) and the Research Foundation of Department of Education of Liaoning Province (No. LJKZ0476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-De Zheng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Lemma 1

The proof of inequality (6):

Choose the first three Legendre orthogonal polynomials on \([\omega ,\chi ]\) (see [28]):

$$ p_{0} (\upsilon ) = 1,p_{1} (\upsilon ) = \frac{1}{\chi - \omega }(2\upsilon - \omega - \chi ),p_{2} (\upsilon ) = \frac{1}{{(\chi - \omega )^{2} }}[6\upsilon^{2} - 6(\omega + \chi )\upsilon + (\omega^{2} + 4\omega \chi + \chi^{2} )]. $$

Simple calculation gives

$$ \begin{array}{*{20}l} {\int_{\omega }^{\chi } {p_{i} } (\upsilon )p_{j} (\upsilon ){\text{d}}\upsilon = \left\{ {\begin{array}{*{20}c} {0,\quad \;} & {i \ne j,} \\ {\frac{\chi - \omega }{{2i + 1}},} & {i = j,} \\ \end{array} } \right.} \hfill & {i,j = 0,1,2.} \hfill \\ \end{array} $$
(17)

Define \(\varsigma (\upsilon ) = {\text{col}}\)\(\{ p_{0} (\upsilon )\ell ,p_{1} (\upsilon )\ell ,p_{2} (\upsilon )\ell \} ,{{\mathbb{M}}\ominus } = [M_{1} \;M_{2} \;M_{3} ].\) For matrix \(B > {\mathbf{0}},\) it follows from the well-known Schur complement lemma that

$$ \left[ {\begin{array}{*{20}c} B & * \\ {{\mathbb{M}}^{{ \top }} } & {{\mathbb{M}}^{{ \top }} B^{ - 1} {\mathbb{M}}} \\ \end{array} } \right] \ge {\mathbf{0}} $$

which directly brings about

$$ ( * )^{{ \top }} \left[ {\begin{array}{*{20}c} B & * \\ {{\mathbb{M}}^{{ \top }} } & {{\mathbb{M}}^{{ \top }} B^{ - 1} {\mathbb{M}}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\vartheta (\upsilon )} \\ {\varsigma (\upsilon )} \\ \end{array} } \right] \ge 0 $$

or equivalently

$$ - 2\varsigma (\upsilon )^{{ \top }} {\mathbb{M}}^{{ \top }} \vartheta (\upsilon ) \le ( * )^{{ \top }} B^{ - 1} {\mathbb{M}}\varsigma (\upsilon ) + ( * )^{{ \top }} B\vartheta (\upsilon ). $$
(18)

Integrating both sides of inequality (18) from \(\omega\) to \(\chi\) yields

$$ \begin{gathered} \int_{\omega }^{\chi } {( * )^{{ \top }} B^{ - 1} {\mathbb{M}}\varsigma (\upsilon ){\text{d}}\upsilon } + \int_{\omega }^{\chi } {( * )^{{ \top }} B\vartheta (\upsilon ){\text{d}}\upsilon } \hfill \\ \ge - 2\ell^{{ \top }} M_{1}^{{ \top }} \int_{\omega }^{\chi } {p_{0} (\upsilon )\vartheta (\upsilon ){\text{d}}\upsilon } - 2\ell^{{ \top }} M_{2}^{{ \top }} \int_{\omega }^{\chi } {p_{1} (\upsilon )\vartheta (\upsilon ){\text{d}}\upsilon } - 2\ell^{{ \top }} M_{3}^{{ \top }} \int_{\omega }^{\chi } {p_{2} (\upsilon )\vartheta (\upsilon ){\text{d}}\upsilon } . \hfill \\ \end{gathered} $$

Integration by parts and applying (17) derives

$$ \begin{gathered} - 2\ell^{{ \top }} M_{1}^{{ \top }} \Theta_{1} \ell - 2\ell^{{ \top }} M_{2}^{{ \top }} \Theta_{2} \ell - 2\ell^{{ \top }} M_{3}^{{ \top }} \Theta_{3} \ell \hfill \\ \le (\chi - \omega )\ell^{{ \top }} \left( {M_{1}^{{ \top }} B^{ - 1} M_{1} + \frac{1}{3}M_{2}^{{ \top }} B^{ - 1} M_{2} + \frac{1}{5}M_{3}^{{ \top }} B^{ - 1} M_{3} } \right)\ell + \int_{\omega }^{\chi } {( * )^{{ \top }} B\vartheta (\upsilon ){\text{d}}\upsilon } , \hfill \\ \end{gathered} $$

which gives inequality (6).

The proof of inequality (7):

Choosing the first three weighted Legendre orthogonal polynomials on \([\omega ,\chi ]\)

$$ q_{0} (\upsilon ) = 1,q_{1} (\upsilon ) = \frac{1}{\chi - \omega }(3\upsilon - \omega - 2\chi ),q_{2} (\upsilon ) = \frac{1}{{(\chi - \omega )^{2} }}[10(\upsilon - \omega )^{2} - 12(\upsilon - \omega )(\chi - \omega ) + 3(\chi - \omega )^{2} ], $$

simple calculation gives

$$ \begin{array}{*{20}l} {\int_{\omega }^{\chi } {(\upsilon - \omega )q_{i} } (\upsilon )q_{j} (\upsilon ){\text{d}}\upsilon = \left\{ {\begin{array}{*{20}c} {0,\quad \quad \;} & {i \ne j,} \\ {\frac{{(\chi - \omega )^{2} }}{2(i + 1)},} & {i = j,} \\ \end{array} } \right.} \hfill & {i,j = 0,1,2.} \hfill \\ \end{array} $$
(19)

Define \(\mu (\upsilon ) = {\text{col}}\)\(\{ q_{0} (\upsilon )\ell ,q_{1} (\upsilon )\ell ,q_{2} (\upsilon )\ell \} ,{{\mathbb{M}}\ominus } = [M_{1} \;M_{2} \;M_{3} ].\) For matrix \(B > {\mathbf{0}},\) it follows from the Schur complement Lemma that

$$ \left[ {\begin{array}{*{20}c} B & * \\ {{\mathbb{M}}^{{ \top }} } & {{\mathbb{M}}^{{ \top }} B^{ - 1} {\mathbb{M}}} \\ \end{array} } \right] \ge {\mathbf{0}} $$

which directly brings about

$$ ( * )^{{ \top }} \left[ {\begin{array}{*{20}c} B & * \\ {{\mathbb{M}}^{{ \top }} } & {{\mathbb{M}}^{{ \top }} B^{ - 1} {\mathbb{M}}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\vartheta (\upsilon )} \\ {\mu (\upsilon )} \\ \end{array} } \right] \ge 0 $$

or equivalently

$$ - 2\mu (\upsilon )^{{ \top }} {\mathbb{M}}^{{ \top }} \vartheta (\upsilon ) \le ( * )^{{ \top }} B^{ - 1} {\mathbb{M}}\mu (\upsilon ) + ( * )^{{ \top }} B\vartheta (\upsilon ). $$
(20)

For \(\upsilon \in [\omega ,\chi ],\) multiplying \(\upsilon - \omega\) and integrating both sides of inequality (20) from \(\omega\) to \(\chi\) yields

$$ \begin{gathered} \int_{\omega }^{\chi } {(\upsilon - \omega )( * )^{{ \top }} B^{ - 1} {\mathbb{M}}\mu (\upsilon ){\text{d}}\upsilon } + \int_{\omega }^{\chi } {(\upsilon - \omega )( * )^{{ \top }} B\vartheta (\upsilon ){\text{d}}\upsilon } \hfill \\ \ge - 2\ell^{{ \top }} M_{1}^{{ \top }} \int_{\omega }^{\chi } {(\upsilon - \omega )\vartheta (\upsilon ){\text{d}}\upsilon } - 2\ell^{{ \top }} M_{2}^{{ \top }} \int_{\omega }^{\chi } {(\upsilon - \omega )q_{1} (\upsilon )\vartheta (\upsilon ){\text{d}}\upsilon } - 2\ell^{{ \top }} M_{3}^{{ \top }} \int_{\omega }^{\chi } {(\upsilon - \omega )q_{2} (\upsilon )\vartheta (\upsilon ){\text{d}}\upsilon } . \hfill \\ \end{gathered} $$

Integration by parts and applying (19) derives

$$ \begin{gathered} - 2\ell^{{ \top }} M_{1}^{{ \top }} \Theta_{1} \ell - 2\ell^{{ \top }} M_{2}^{{ \top }} \Theta_{2} \ell - 2\ell^{{ \top }} M_{3}^{{ \top }} \Theta_{3} \ell \hfill \\ \le \frac{1}{2}(\chi - \omega )^{2} \ell^{{ \top }} \left( {M_{1}^{{ \top }} B^{ - 1} M_{1} + \frac{1}{2}M_{2}^{{ \top }} B^{ - 1} M_{2} + \frac{1}{3}M_{3}^{{ \top }} B^{ - 1} M_{3} } \right)\ell + \int_{\omega }^{\chi } {(\upsilon - \omega )( * )^{{ \top }} B\vartheta (\upsilon ){\text{d}}\upsilon } , \hfill \\ \end{gathered} $$

which gives inequality (7).

Appendix 2

Denote \(e_{i} = [\begin{array}{*{20}c} {\underbrace {{{\mathbf{0}}\,\;{\kern 1pt} ...\;\,{\kern 1pt} {\mathbf{0}}}}_{i - 1}} & {I_{n} } & {\underbrace {{{\mathbf{0}}\,\;{\kern 1pt} ...\;\,{\kern 1pt} {\mathbf{0}}}}_{17 - i}} \\ \end{array} ],{ }i = 1,2,...,17,\)

$$ e_{u} = - \Omega e_{1} + \Pi e_{8} ,e_{v} = - \Delta e_{4} + \Sigma e_{2} ,{\mathbf{\mathbb{Q}}}_{j} = {\text{diag}}\{ Q_{j} ,3Q_{j} ,5Q_{j} \} ,j = 3,4,...,8, $$
$$ \begin{gathered} e_{a} = {\text{col}}\{ e_{1} - e_{2} ,e_{1} + e_{2} - 2e_{10} ,e_{1} - e_{2} + 6e_{10} - 6e_{14} \} , \hfill \\ e_{b} = {\text{col}}\{ e_{2} - e_{3} ,e_{2} + e_{3} - 2e_{11} ,e_{2} - e_{3} + 6e_{11} - 6e_{15} \} , \hfill \\ e_{c} = {\text{col}}\{ e_{4} - e_{5} ,e_{4} + e_{5} - 2e_{12} ,e_{4} - e_{5} + 6e_{12} - 6e_{16} \} , \hfill \\ e_{d} = {\text{col}}\{ e_{5} - e_{6} ,e_{5} + e_{6} - 2e_{13} ,e_{5} - e_{6} + 6e_{13} - 6e_{17} \} , \hfill \\ \Phi_{k} = \left[ {\begin{array}{*{20}c} {\overline{\mu }S_{1} } & {\overline{\mu }S_{2} + R_{k} } \\ * & {\overline{\mu }S_{3} } \\ \end{array} } \right],\Phi_{k + 2} = \left[ {\begin{array}{*{20}c} {\overline{\kappa }U_{1} } & {\overline{\kappa }U_{2} + R_{k + 2} } \\ * & {\overline{\kappa }U_{3} } \\ \end{array} } \right],\;k = 1,2, \hfill \\ \Xi_{0} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {e_{1} } \\ {\mathbf{0}} \\ \end{array} } \right]^{{ \top }} P_{1} \left[ {\begin{array}{*{20}c} {e_{u} } \\ {e_{1} - e_{3} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {e_{4} } \\ {\mathbf{0}} \\ \end{array} } \right]^{{ \top }} P_{2} \left[ {\begin{array}{*{20}c} {e_{v} } \\ {e_{4} - e_{6} } \\ \end{array} } \right]} \right\}, \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Xi_{1} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{10} } \\ \end{array} } \right]^{{ \top }} P_{5} \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{1} - e_{2} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{11} } \\ \end{array} } \right]^{{ \top }} P_{6} \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{2} - e_{3} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {e_{4} } \\ {e_{12} } \\ \end{array} } \right]^{{ \top }} P_{7} \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{4} - e_{5} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {e_{4} } \\ {e_{13} } \\ \end{array} } \right]^{{ \top }} P_{8} \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{5} - e_{6} } \\ \end{array} } \right]} \right\} \hfill \\ \quad \quad \; + {\text{sym}}\left\{ {[(\Theta_{1} e_{4} - e_{7} )^{{ \top }} \Lambda_{1} + (e_{7} - \Theta_{2} e_{4} )^{{ \top }} \Lambda_{2} ]e_{v} + (\Theta_{1} e_{4} - e_{7} )^{{ \top }} Y_{1} (e_{7} - \Theta_{2} e_{4} )} \right\} \hfill \\ \quad \quad \; + {\text{sym}}\left\{ {(\Theta_{1} e_{5} - e_{8} )^{{ \top }} Y_{2} (e_{8} - \Theta_{2} e_{5} ) + (\Theta_{1} e_{6} - e_{9} )^{{ \top }} Y_{3} (e_{9} - \Theta_{2} e_{6} )} \right\} \hfill \\ \quad \quad \; + {\text{sym}}\left\{ {[\Theta_{1} (e_{4} - e_{5} ) - (e_{7} - e_{8} )]^{{ \top }} Y_{4} [(e_{7} - e_{8} ) - \Theta_{2} (e_{4} - e_{5} )]} \right\} \hfill \\ \quad \quad \; + {\text{sym}}\left\{ {[\Theta_{1} (e_{5} - e_{6} ) - (e_{8} - e_{9} )]^{{ \top }} Y_{5} [(e_{8} - e_{9} ) - \Theta_{2} (e_{5} - e_{6} )]} \right\} \hfill \\ \quad \quad \; + {\text{sym}}\left\{ {[\Theta_{1} (e_{4} - e_{6} ) - (e_{7} - e_{9} )]^{{ \top }} Y_{6} [(e_{7} - e_{9} ) - \Theta_{2} (e_{4} - e_{6} )]} \right\} \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Xi_{\mu } = e_{2}^{{ \top }} (Q_{1} - Q_{2} )e_{2} + ( * )^{{ \top }} P_{5} \left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{10} } \\ \end{array} } \right] - ( * )^{{ \top }} P_{6} \left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{11} } \\ \end{array} } \right] + {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{10} } \\ \end{array} } \right]^{{ \top }} P_{5} \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{2} - e_{10} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{11} } \\ \end{array} } \right]^{{ \top }} P_{6} \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{11} - e_{2} } \\ \end{array} } \right]} \right\}, \hfill \\ \Xi_{\kappa } = ( * )^{{ \top }} (P_{3} - P_{4} )\left[ {\begin{array}{*{20}c} {e_{5} } \\ {e_{8} } \\ \end{array} } \right] + ( * )^{{ \top }} P_{7} \left[ {\begin{array}{*{20}c} {e_{4} } \\ {e_{12} } \\ \end{array} } \right] - ( * )^{{ \top }} P_{8} \left[ {\begin{array}{*{20}c} {e_{4} } \\ {e_{13} } \\ \end{array} } \right] + {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {e_{4} } \\ {e_{12} } \\ \end{array} } \right]^{{ \top }} P_{7} \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{5} - e_{12} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {e_{4} } \\ {e_{13} } \\ \end{array} } \right]^{{ \top }} P_{8} \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{13} - e_{5} } \\ \end{array} } \right]} \right\}, \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Xi_{2} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{10} } \\ \end{array} } \right]^{{ \top }} P_{1} \left[ {\begin{array}{*{20}c} {e_{u} } \\ {e_{1} - e_{3} } \\ \end{array} } \right]} \right\},\quad \Xi_{3} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{10} } \\ \end{array} } \right]^{{ \top }} P_{5} \left[ {\begin{array}{*{20}c} {e_{u} } \\ {\mathbf{0}} \\ \end{array} } \right]} \right\} - e_{10}^{{ \top }} (\overline{\mu }S_{1} )e_{10} \hfill \\ \quad \;\;\;\quad \;\;\; + {\text{sym\{ }}6(e_{10} - e_{14} )^{{ \top }} (\overline{\mu }S_{2} + R_{1} )e_{10} \} - 3( * )^{{ \top }} (\overline{\mu }S_{1} )(e_{10} - e_{14} ) - 12e_{10}^{{ \top }} (\overline{\mu }S_{3} )e_{10} , \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Xi_{4} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{11} } \\ \end{array} } \right]^{{ \top }} P_{1} \left[ {\begin{array}{*{20}c} {e_{u} } \\ {e_{1} - e_{3} } \\ \end{array} } \right]} \right\},\quad \Xi_{5} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{11} } \\ \end{array} } \right]^{{ \top }} P_{6} \left[ {\begin{array}{*{20}c} {e_{u} } \\ {\mathbf{0}} \\ \end{array} } \right]} \right\} - e_{11}^{{ \top }} (\overline{\mu }S_{1} )e_{11} \hfill \\ \quad \;\;\;\,\,\quad \;\;\; + {\text{sym}}\{ 6(e_{11} - e_{15} )^{{ \top }} (\overline{\mu }S_{2} + R_{2} )e_{11} \} - 3( * )^{{ \top }} (\overline{\mu }S_{1} )(e_{11} - e_{15} ) - 12e_{11}^{{ \top }} (\overline{\mu }S_{3} )e_{11} , \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Xi_{6} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{12} } \\ \end{array} } \right]^{{ \top }} P_{2} \left[ {\begin{array}{*{20}c} {e_{v} } \\ {e_{4} - e_{6} } \\ \end{array} } \right]} \right\},\quad \Xi_{7} = \left\{ {\left[ {\begin{array}{*{20}c} {e_{4} } \\ {e_{12} } \\ \end{array} } \right]^{{ \top }} P_{7} \left[ {\begin{array}{*{20}c} {e_{v} } \\ {\mathbf{0}} \\ \end{array} } \right]} \right\} - e_{12}^{{ \top }} (\overline{\kappa }U_{1} )e_{12} \hfill \\ \quad \;\;\;\,\,\quad \;\;\;\,\,{\text{ + sym\{ }}6(e_{12} - e_{16} )^{{ \top }} (\overline{\kappa }U_{2} + R_{3} )e_{12} - 3( * )^{{ \top }} (\overline{\kappa }U_{1} )(e_{12} - e_{16} ) - 12e_{12}^{{ \top }} (\overline{\kappa }U_{3} )e_{12} , \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Xi_{8} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {e_{13} } \\ \end{array} } \right]^{{ \top }} P_{2} \left[ {\begin{array}{*{20}c} {e_{v} } \\ {e_{4} - e_{6} } \\ \end{array} } \right]} \right\},\quad \Xi_{9} = {\text{sym}}\left\{ {\left[ {\begin{array}{*{20}c} {e_{4} } \\ {e_{13} } \\ \end{array} } \right]^{{ \top }} P_{8} \left[ {\begin{array}{*{20}c} {e_{v} } \\ {\mathbf{0}} \\ \end{array} } \right]} \right\} - e_{13}^{{ \top }} (\overline{\kappa }U_{1} )e_{13} \hfill \\ \quad \;\;\;\,\,\quad \;\;\;\,\,{\text{ + sym}}\{ 6(e_{13} - e_{17} )^{{ \top }} (\overline{\kappa }U_{2} + R_{4} )e_{13} \} - 3( * )^{{ \top }} (\overline{\kappa }U_{1} )(e_{13} - e_{17} ) - 12e_{13}^{{ \top }} (\overline{\kappa }U_{3} )e_{13} , \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Xi_{a} = \Xi_{0} + \Xi^{\prime}_{1} + \overline{\mu }(\Xi_{4} + \Xi_{5} ) + \overline{\kappa }(\Xi_{8} + \Xi_{9} ),\;\;\Xi_{b} = \Xi_{0} + \Xi^{\prime}_{1} + \overline{\mu }(\Xi_{4} + \Xi_{5} ) + \overline{\kappa }(\Xi_{6} + \Xi_{7} ), \hfill \\ \Xi_{c} = \Xi_{0} + \Xi^{\prime}_{1} + \overline{\mu }(\Xi_{2} + \Xi_{3} ) + \overline{\kappa }(\Xi_{8} + \Xi_{9} ),\;\;\Xi_{d} = \Xi_{0} + \Xi^{\prime}_{1} + \overline{\mu }(\Xi_{2} + \Xi_{3} ) + \overline{\kappa }(\Xi_{6} + \Xi_{7} ),\; \hfill \\ \Xi^{\prime}_{1} = \Xi_{1} + \mu_{d} \Xi_{\mu } + \kappa_{d} \Xi_{\kappa } . \hfill \\ \end{gathered} $$

Appendix 3: Proof of Theorem 1

Consider the following LKF:

$$ V(t) = \sum\limits_{j = 1}^{7} {V_{j} } (t), $$

where

$$\begin{aligned} V_{l} (t) & = ( * )^{ { \top }} P_{l} \eta _{{lt}} ,\;l = 1,2, \hfill \\ V_{3} (t) & = 2\sum\limits_{{i = 1}}^{n} {\int_{0}^{{w_{i} (t)}} {\{ \lambda _{{1i}} [\theta _{i}^{ + } \upsilon - \rho _{i} (} } \upsilon )] + \lambda _{{2i}} [\rho _{i} (\upsilon ) - \theta _{i}^{ - } \upsilon ]\} {\text{d}}\upsilon , \hfill \\ \end{aligned}$$
$$\begin{gathered} V_{4} (t) = \int_{{t - \mu (t)}}^{t} {u_{\upsilon }^{ { \top }} } Q_{1} u_{\upsilon } {\text{d}}\upsilon + \int_{{t - \bar{\mu }}}^{{t - \mu (t)}} {u_{\upsilon }^{ { \top }} } Q_{2} u_{\upsilon } {\text{d}}\upsilon + \int_{{t - \kappa (t)}}^{t} {\eta _{{3\upsilon }}^{ { \top }} } P_{3} \eta _{{3\upsilon }} {\text{d}}\upsilon + \int_{{t - \bar{\kappa }}}^{{t - \kappa (t)}} {\eta _{{3\upsilon }}^{ { \top }} } P_{4} \eta _{{3\upsilon }} {\text{d}}\upsilon , \hfill \\ V_{5} (t) = \bar{\mu }\int_{{t - \bar{\mu }}}^{t} {(\bar{\mu } - t + \upsilon )\eta _{{4\upsilon }}^{ { \top }} S\eta _{{4\upsilon }} {\text{d}}\upsilon } + \bar{\kappa }\int_{{t - \bar{\kappa }}}^{t} {(\bar{\kappa } - t + \upsilon )\eta _{{5\upsilon }}^{ { \top }} U\eta _{{5\upsilon }} {\text{d}}\upsilon } , \hfill \\ \end{gathered}$$
$$\begin{gathered} V_{6} (t) = \frac{1}{2}\int_{{t - \bar{\mu }}}^{t} {(\bar{\mu } - t + \upsilon )\dot{u}_{\upsilon }^{ { \top }} [2Q_{3} + (\bar{\mu } - t + \upsilon )Q_{4} + (\bar{\mu } + t - \upsilon )Q_{5} ]\dot{u}_{\upsilon } {\text{d}}\upsilon } \hfill \\ \quad \quad + \frac{1}{2}\int_{{t - \bar{\kappa }}}^{t} {(\bar{\kappa } - t + \upsilon )\dot{w}_{\upsilon }^{ { \top }} [2Q_{6} + (\bar{\kappa } - t + \upsilon )Q_{7} + (\bar{\kappa } + t - \upsilon )Q_{8} ]\dot{w}_{\upsilon } {\text{d}}\upsilon } , \hfill \\ V_{7} (t) = \mu (t)\eta _{{6t}}^{ { \top }} P_{5} \eta _{{6t}} + [\bar{\mu } - \mu (t)]\eta _{{7t}}^{ { \top }} P_{6} \eta _{{7t}} + \kappa (t)\eta _{{8t}}^{ { \top }} P_{7} \eta _{{8t}} + [\bar{\kappa } - \kappa (t)]\eta _{{9t}}^{ { \top }} P_{8} \eta _{{9t}} , \hfill \\ \end{gathered}$$

with

$$ \begin{gathered} \eta_{1t} = {\text{col}}\left\{ {u_{t} ,\int_{{t - \overline{\mu }}}^{t} {u_{\upsilon } } {\text{d}}\upsilon } \right\},\;\eta_{2t} = {\text{col}}\left\{ {w_{t} ,\int_{{t - \overline{\kappa }}}^{t} {w_{\upsilon } } {\text{d}}\upsilon } \right\},\;\eta_{3\upsilon } = \left[ {\begin{array}{*{20}c} {w_{\upsilon } } \\ {\rho (w_{\upsilon } )} \\ \end{array} } \right], \hfill \\ \eta_{4\upsilon } = \left[ {\begin{array}{*{20}c} {u_{\upsilon } } \\ {\dot{u}_{\upsilon } } \\ \end{array} } \right],\,\eta_{5\upsilon } = \left[ {\begin{array}{*{20}c} {w_{\upsilon } } \\ {\dot{w}_{\upsilon } } \\ \end{array} } \right],\;\eta_{6t} = \left[ {\begin{array}{*{20}c} {u_{t} } \\ {v_{1t} } \\ \end{array} } \right],\;\eta_{7t} = \left[ {\begin{array}{*{20}c} {u_{t} } \\ {v_{2t} } \\ \end{array} } \right],\;\eta_{8t} = \left[ {\begin{array}{*{20}c} {w_{t} } \\ {v_{3t} } \\ \end{array} } \right],\;\eta_{9t} = \left[ {\begin{array}{*{20}c} {w_{t} } \\ {v_{4t} } \\ \end{array} } \right].\; \hfill \\ \end{gathered} $$

Denote \(\Lambda_{k} = {\text{diag\{ }}\lambda_{k1}^{ + } ,\lambda_{k2}^{ + } , \cdots ,\lambda_{kn}^{ + } ,\;k = 1,2,\) the derivative of \(V(t,u_{t} ,w_{t} )\) with respect to time \(t \in [0, + \infty )\) along the solution of (3) is

$$ \dot{V}(t) = \sum\limits_{j = 1}^{7} {\dot{V}_{j} } (t) $$
(21)

where

$$ \dot{V}_{1} (t) = 2\left[ {\begin{array}{*{20}c} {u_{t} } \\ {\mu (t)v_{1t} + [\overline{\mu } - \mu (t)]v_{2t} } \\ \end{array} } \right]^{{ \top }} P_{1} \left[ {\begin{array}{*{20}c} {\dot{u}_{t} } \\ {u_{t} - u_{{\overline{\mu }}} } \\ \end{array} } \right], $$
(22)
$$ \dot{V}_{2} (t) = 2\left[ {\begin{array}{*{20}c} {w_{t} } \\ {\kappa (t)v_{3t} + [\overline{\kappa } - \kappa (t)]v_{4t} } \\ \end{array} } \right]^{{ \top }} P_{2} \left[ {\begin{array}{*{20}c} {\dot{w}_{t} } \\ {w_{t} - w_{{\overline{\kappa }}} } \\ \end{array} } \right], $$
(23)
$$ \dot{V}_{3} (t) = 2\left\{ {[\Theta_{1} w_{t} - \rho (w_{t} )]^{{ \top }} \Lambda_{1} + [\rho (w_{t} ) - \Theta_{2} w_{t} ]^{{ \top }} \Lambda_{2} } \right\}\dot{w}_{t} , $$
(24)
$$\begin{gathered} \dot{V}_{4} (t) = u_{t}^{ { \top }} Q_{1} u_{t} - [1 - \dot{\mu }(t)](Q_{1} - Q_{2} )u_{\mu }^{ { \top }} u_{\mu } - u_{{\bar{\mu }}}^{ { \top }} Q_{2} u_{{\bar{\mu }}} \hfill \\ \quad \quad \quad + ( * )^{ { \top }} P_{3} \eta _{{3t}} - [1 - \dot{\kappa }(t)]( * )^{ { \top }} (P_{3} - P_{4} )\eta _{{3(t - \kappa (t))}} - ( * )^{ { \top }} P_{4} \eta _{{3(t - \bar{\kappa })}} , \hfill \\ \end{gathered}$$
(25)
$$\dot{V}_{5} (t) = \bar{\mu }^{2} \eta _{{4t}}^{ { \top }} S\eta _{{4t}} - \bar{\mu }\int_{{t - \bar{\mu }}}^{t} {\eta _{{4\upsilon }}^{ { \top }} } S\eta _{{4\upsilon }} {\text{d}}\upsilon + \bar{\kappa }^{2} \eta _{{5t}}^{ { \top }} U\eta _{{5t}} - \bar{\kappa }\int_{{t - \bar{\kappa }}}^{t} {\eta _{{5\upsilon }}^{ { \top }} } U\eta _{{5\upsilon }} {\text{d}}\upsilon ,$$
(26)
$$ \begin{gathered} \dot{V}_{6} (t) = \frac{1}{2}\overline{\mu }\dot{u}_{t}^{{ \top }} (2Q_{3} + \overline{\mu }Q_{4} + \overline{\mu }Q_{5} )\dot{u}_{t} + V_{a} (t) - V_{b} (t) - V_{c} (t) \hfill \\ \quad \quad \quad + \frac{1}{2}\overline{\kappa }\dot{w}_{t}^{{ \top }} (2Q_{6} + \overline{\kappa }Q_{7} + \overline{\kappa }Q_{8} )\dot{w}_{t} + V_{d} (t) - V_{e} (t) - V_{f} (t), \hfill \\ \end{gathered} $$
(27)
$$ \begin{gathered} \dot{V}_{7} (t) = \dot{\mu }(t)\left[ {( * )^{{ \top }} P_{5} \eta_{6t} - ( * )^{{ \top }} P_{6} \eta_{7t} } \right] + 2\mu (t)\eta_{6t}^{{ \top }} P_{5} \left[ {\begin{array}{*{20}c} {\dot{u}_{t} } \\ {\dot{v}_{1t} } \\ \end{array} } \right] + 2[\overline{\mu } - \mu (t)]\eta_{7t}^{{ \top }} P_{6} \left[ {\begin{array}{*{20}c} {\dot{u}_{t} } \\ {\dot{v}_{2t} } \\ \end{array} } \right] \hfill \\ \quad \quad \quad + \dot{\kappa }(t)\left[ {( * )^{{ \top }} P_{7} \eta_{8t} - ( * )^{T} P_{8} \eta_{9t} } \right] + 2\kappa (t)\eta_{8t}^{{ \top }} P_{7} \left[ {\begin{array}{*{20}c} {\dot{w}_{t} } \\ {\dot{v}_{3t} } \\ \end{array} } \right] + 2[\overline{\kappa } - \kappa (t)]\eta_{9t}^{{ \top }} P_{8} \left[ {\begin{array}{*{20}c} {\dot{w}_{t} } \\ {\dot{v}_{4t} } \\ \end{array} } \right] \hfill \\ \end{gathered} $$
$$ \begin{gathered} = \dot{\mu }(t)\left[ {( * )^{{ \top }} P_{5} \eta_{6t} - ( * )^{{ \top }} P_{6} \eta_{7t} } \right] + \dot{\kappa }(t)\left[ {( * )^{{ \top }} P_{7} \eta_{8t} - ( * )^{{ \top }} P_{8} \eta_{9t} } \right] \hfill \\ \quad + 2\eta_{6t}^{{ \top }} P_{5} \left[ {\begin{array}{*{20}c} {\mu (t)\dot{u}_{t} } \\ {u_{t} - [1 - \dot{\mu }(t)]u_{\mu } - \dot{\mu }(t)v_{1t} } \\ \end{array} } \right] + 2\eta_{7t}^{{ \top }} P_{6} \left[ {\begin{array}{*{20}c} {[\overline{\mu } - \mu (t)]\dot{u}_{t} } \\ {[1 - \dot{\mu }(t)]u_{\mu } - u_{{\overline{\mu }}} + \dot{\mu }(t)v_{2t} } \\ \end{array} } \right] \hfill \\ \quad + 2\eta_{8t}^{{ \top }} P_{7} \left[ {\begin{array}{*{20}c} {\kappa (t)\dot{w}_{t} } \\ {w_{t} - [1 - \dot{\kappa }(t)]w_{\kappa } - \dot{\kappa }(t)v_{3t} } \\ \end{array} } \right] + 2\eta_{9t}^{{ \top }} P_{8} \left[ {\begin{array}{*{20}c} {[\overline{\kappa } - \kappa (t)]\dot{w}_{t} } \\ {[1 - \dot{\kappa }(t)]w_{\kappa } - w_{{\overline{\kappa }}} + \dot{\kappa }(t)v_{4t} } \\ \end{array} } \right], \hfill \\ \end{gathered} $$
(28)

where

$$\begin{gathered} V_{a} (t) = - \int_{{t - \mu (t)}}^{t} {\dot{u}_{\upsilon }^{ { \top }} Q_{3} \dot{u}_{\upsilon } {\text{d}}\upsilon } - \int_{{t - \bar{\mu }}}^{{t - \mu (t)}} {\dot{u}_{\upsilon }^{ { \top }} } Q_{3} \dot{u}_{\upsilon } {\text{d}}\upsilon , \hfill \\ V_{b} (t) = [\bar{\mu } - \mu (t)]\int_{{t - \mu (t)}}^{t} {\dot{u}_{\upsilon }^{ { \top }} Q_{4} \dot{u}_{\upsilon } {\text{d}}\upsilon } + \mu (t)\int_{{t - \bar{\mu }}}^{{t - \mu (t)}} {\dot{u}_{\upsilon }^{ { \top }} } Q_{5} \dot{u}_{\upsilon } {\text{d}}\upsilon , \hfill \\ V_{c} (t) = \int_{{t - \mu (t)}}^{t} {\dot{u}_{\upsilon }^{ { \top }} [(\upsilon - t + \mu (t))Q_{4} + (t - \upsilon )Q_{5} ]\dot{u}_{\upsilon } {\text{d}}\upsilon } \hfill \\ \quad \quad \quad + \int_{{t - \bar{\mu }}}^{{t - \tau (t)}} {\dot{u}_{\upsilon }^{ { \top }} } [(\upsilon - t + \bar{\mu })Q_{4} + (t - \mu (t) - \upsilon )Q_{5} ]\dot{u}_{\upsilon } {\text{d}}\upsilon , \hfill \\ V_{d} (t) = - \int_{{t - \kappa (t)}}^{t} {\dot{w}_{\upsilon }^{ { \top }} } Q_{6} \dot{w}_{\upsilon } {\text{d}}\upsilon - \int_{{t - \bar{\kappa }}}^{{t - \kappa (t)}} {\dot{w}_{\upsilon }^{ { \top }} } Q_{6} \dot{w}_{\upsilon } {\text{d}}\upsilon , \hfill \\ V_{e} (t) = [\bar{\kappa } - \kappa (t)]\int_{{t - \kappa (t)}}^{t} {\dot{w}_{\upsilon }^{ { \top }} } Q_{7} \dot{w}_{\upsilon } {\text{d}}\upsilon + \kappa (t)\int_{{t - \bar{\kappa }}}^{{t - \kappa (t)}} {\dot{w}_{\upsilon }^{ { \top }} } Q_{8} \dot{w}_{\upsilon } {\text{d}}\upsilon , \hfill \\ V_{f} (t) = \int_{{t - \kappa (t)}}^{t} {\dot{w}_{\upsilon }^{ { \top }} } [(\upsilon - t + \kappa (t))Q_{7} + (t - \upsilon )Q_{8} ]\dot{w}_{\upsilon } {\text{d}}\upsilon \hfill \\ \quad \quad \quad + \int_{{t - \bar{\kappa }}}^{{t - \kappa (t)}} {\dot{w}_{\upsilon }^{ { \top }} } [(\upsilon - t + \bar{\kappa })Q_{7} + (t - \kappa (t) - \upsilon )Q_{8} ]\dot{w}_{\upsilon } {\text{d}}\upsilon . \hfill \\ \end{gathered}$$

Integration by part derives the following free-weight-matrix-based zero-value terms (see [39])

$$ \begin{gathered} 0 = u_{t}^{{ \top }} R_{1} u_{t} - u_{\mu }^{{ \top }} R_{1} u_{\mu } - 2\int_{t - \mu (t)}^{t} {u_{\upsilon }^{{ \top }} R_{1} \dot{u}_{\upsilon } } {\text{d}}\upsilon + u_{\mu }^{{ \top }} R_{2} u_{\mu } - u_{{\overline{\mu }}}^{{ \top }} R_{2} u_{{\overline{\mu }}} - 2\int_{{t - \overline{\mu }}}^{t - \mu (t)} {u_{\upsilon }^{{ \top }} R_{2} \dot{u}_{\upsilon } } {\text{d}}\upsilon , \hfill \\ 0 = w_{t}^{{ \top }} R_{3} w_{t} - w_{\kappa }^{{ \top }} R_{3} w_{\kappa } - 2\int_{t - \kappa (t)}^{t} {w_{\upsilon }^{{ \top }} R_{3} \dot{w}_{\upsilon } } {\text{d}}\upsilon + w_{\kappa }^{{ \top }} R_{4} w_{\kappa } - w_{{\overline{\kappa }}}^{{ \top }} R_{4} w_{{\overline{\kappa }}} - 2\int_{{t - \overline{\kappa }}}^{t - \kappa (t)} {w_{\upsilon }^{{ \top }} R_{4} \dot{w}_{\upsilon } } {\text{d}}\upsilon . \hfill \\ \end{gathered} $$

Adding them into \(\dot{V}_{5} (t)\) yields

$$\begin{gathered} - \bar{\mu }\int_{{t - \bar{\mu }}}^{t} {\eta _{{4\upsilon }}^{ { \top }} } S\eta _{{4\upsilon }} {\text{d}}\upsilon - \bar{\kappa }\int_{{t - \bar{\kappa }}}^{t} {\eta _{{5\upsilon }}^{ { \top }} } U\eta _{{5\upsilon }} {\text{d}}\upsilon \hfill \\ \quad = u_{t}^{ { \top }} R_{1} u_{t} + u_{\mu }^{ { \top }} (R_{2} - R_{1} )u_{\mu } - u_{{\bar{\mu }}}^{ { \top }} R_{2} u_{{\bar{\mu }}} - \int_{{t - \mu (t)}}^{t} {\eta _{{4\upsilon }}^{ { \top }} \Phi _{1} \eta _{{4\upsilon }} } {\text{d}}\upsilon - \int_{{t - \bar{\mu }}}^{{t - \mu (t)}} {\eta _{{4\upsilon }}^{ { \top }} \Phi _{2} \eta _{{4\upsilon }} } {\text{d}}\upsilon \hfill \\ \quad \;\;\; + w_{t}^{ { \top }} R_{3} w_{t} + w_{\kappa }^{ { \top }} (R_{4} - R_{3} )w_{\kappa } - w_{{\bar{\kappa }}}^{ { \top }} R_{4} w_{{\bar{\kappa }}} - \int_{{t - \kappa (t)}}^{t} {\eta _{{5\upsilon }}^{ { \top }} \Phi _{3} \eta _{{5\upsilon }} } {\text{d}}\upsilon - \int_{{t - \bar{\kappa }}}^{{t - \kappa (t)}} {\eta _{{5\upsilon }}^{ { \top }} \Phi _{4} \eta _{{5\upsilon }} } {\text{d}}\upsilon . \hfill \\ \end{gathered}$$

Utilizing Lemma 1 derives

$$\begin{gathered} \int_{{t - \mu (t)}}^{t} {\eta _{{4\upsilon }}^{ { \top }} \Phi _{1} \eta _{{4\upsilon }} } {\text{d}}\upsilon + \int_{{t - \bar{\mu }}}^{{t - \mu (t)}} {\eta _{{4\upsilon }}^{ { \top }} \Phi _{2} \eta _{{4\upsilon }} } {\text{d}}\upsilon \hfill \\ \quad \ge \frac{1}{{\mu (t)}}( * )^{ { \top }} \Phi _{1} \left[ {\begin{array}{*{20}c} {\mu (t)v_{{1t}} } \\ {u_{t} - u_{\mu } } \\ \end{array} } \right] + \frac{3}{{\mu (t)}}( * )^{ { \top }} \Phi _{1} \left[ {\begin{array}{*{20}c} {\mu (t)(v_{{1t}} - v_{{5t}} )} \\ {u_{t} + u_{\mu } - 2\mu (t)v_{{1t}} } \\ \end{array} } \right] \hfill \\ \quad \;\; + \frac{1}{{\bar{\mu } - \mu (t)}}( * )^{ { \top }} \Phi _{2} \left[ {\begin{array}{*{20}c} {[\bar{\mu } - \mu (t)]v_{{2t}} } \\ {u_{\mu } - u_{{\bar{\mu }}} } \\ \end{array} } \right] + \frac{3}{{\bar{\mu } - \mu (t)}}( * )^{ { \top }} \Phi _{2} \left[ {\begin{array}{*{20}c} {[\bar{\mu } - \mu (t)](v_{{2t}} - v_{{6t}} )} \\ {u_{\mu } + u_{{\bar{\mu }}} - 2[\bar{\mu } - \mu (t)]v_{{2t}} } \\ \end{array} } \right] \hfill \\ \quad = \mu (t)v_{{1t}}^{ { \top }} (\bar{\mu }S_{1} )v_{{1t}} + 2v_{{1t}}^{ { \top }} (\bar{\mu }S_{2} + R_{1} )(u_{t} - u_{\mu } ) + \frac{{\bar{\mu }}}{{\mu (t)}}( * )^{ { \top }} S_{3} (u_{t} - u_{\mu } ) \hfill \\ \quad \;\; + 3\mu (t)( * )^{ { \top }} (\bar{\mu }S_{1} )(v_{{1t}} - v_{{5t}} ) + 6(v_{{1t}} - v_{{5t}} )^{ { \top }} (\bar{\mu }S_{2} + R_{1} )[u_{t} + u_{\mu } - 2\mu (t)v_{{1t}} ] \hfill \\ \quad \;\; + \frac{{3\bar{\mu }}}{{\mu (t)}}( * )^{ { \top }} S_{3} (u_{t} + u_{\mu } ) - 12(u_{t} + u_{\mu } )^{ { \top }} (\bar{\mu }S_{3} )v_{{1t}} + 12\mu (t)v_{{1t}}^{ { \top }} (\bar{\mu }S_{3} )v_{{1t}} \hfill \\ \quad \;\; + [\bar{\mu } - \mu (t)]v_{{2t}}^{ { \top }} (\bar{\mu }S_{1} )v_{{2t}} + 2v_{{2t}}^{ { \top }} (\bar{\mu }S_{2} + R_{2} )(u_{\mu } - u_{{\bar{\mu }}} ) + \frac{{\bar{\mu }}}{{\bar{\mu } - \mu (t)}}( * )^{ { \top }} S_{3} (u_{\mu } - u_{{\bar{\mu }}} ) \hfill \\ \quad \;\; + 3[\bar{\mu } - \mu (t)]( * )^{ { \top }} (\bar{\mu }S_{1} )(v_{{2t}} - v_{{6t}} ) + 6(v_{{2t}} - v_{{6t}} )^{ { \top }} (\bar{\mu }S_{2} + R_{2} )\{ u_{\mu } + u_{{\bar{\mu }}} - 2[\bar{\mu } - \mu (t)]v_{{2t}} \} \hfill \\ \quad \;\; + \frac{{3\bar{\mu }}}{{\bar{\mu } - \mu (t)}}( * )^{ { \top }} S_{3} (u_{\mu } + u_{{\bar{\mu }}} ) - 12(u_{\mu } + u_{{\bar{\mu }}} )^{ { \top }} (\bar{\mu }S_{3} )v_{{2t}} + 12[\bar{\mu } - \mu (t)]v_{{2t}}^{ { \top }} (\bar{\mu }S_{3} )v_{{2t}} , \hfill \\ \end{gathered}$$
(29)
$$ \begin{gathered} \int_{t - \kappa (t)}^{t} {\eta_{5\upsilon }^{{ \top }} \Phi_{3} \eta_{5\upsilon } } {\text{d}}\upsilon + \int_{{t - \overline{\kappa }}}^{t - \kappa (t)} {\eta_{5\upsilon }^{{ \top }} \Phi_{4} \eta_{5\upsilon } } {\text{d}}\upsilon \hfill \\ \quad \ge \frac{1}{\kappa (t)}( * )^{{ \top }} \Phi_{3} \left[ {\begin{array}{*{20}c} {\kappa (t)v_{3t} } \\ {w_{t} - w_{\kappa } } \\ \end{array} } \right] + \frac{3}{\kappa (t)}( * )^{{ \top }} \Phi_{3} \left[ {\begin{array}{*{20}c} {\kappa (t)(v_{3t} - v_{7t} )} \\ {w_{t} + w_{\kappa } - 2\kappa (t)v_{3t} } \\ \end{array} } \right] \hfill \\ \quad \;\; + \frac{1}{{\overline{\kappa } - \kappa (t)}}( * )^{{ \top }} \Phi_{4} \left[ {\begin{array}{*{20}c} {[\overline{\kappa } - \kappa (t)]v_{4t} } \\ {w_{\kappa } - w_{{\overline{\kappa }}} } \\ \end{array} } \right] + \frac{3}{{\overline{\kappa } - \kappa (t)}}( * )^{{ \top }} \Phi_{4} \left[ {\begin{array}{*{20}c} {[\overline{\kappa } - \kappa (t)](v_{4t} - v_{8t} )} \\ {w_{\kappa } + w_{{\overline{\kappa }}} - 2[\overline{\kappa } - \kappa (t)]v_{4t} } \\ \end{array} } \right] \hfill \\ \quad = \kappa (t)v_{3t}^{{ \top }} (\overline{\kappa }U_{1} )v_{3t} + 2v_{3t}^{{ \top }} (\overline{\kappa }U_{2} + R_{3} )(w_{t} - w_{\kappa } ) + \frac{{\overline{\kappa }}}{\kappa (t)}( * )^{{ \top }} U_{3} (w_{t} - w_{\kappa } ) \hfill \\ \quad \;\; + 3\kappa (t)( * )^{{ \top }} (\overline{\kappa }U_{1} )(v_{3t} - v_{7t} ) + 6(v_{3t} - v_{7t} )^{{ \top }} (\overline{\kappa }U_{2} + R_{3} )[w_{t} + w_{\kappa } - 2\kappa (t)v_{3t} ] \hfill \\ \quad \;\; + \frac{{3\overline{\kappa }}}{\kappa (t)}( * )^{{ \top }} U_{3} (w_{t} + w_{\kappa } ) - 12(w_{t} + w_{\kappa } )^{{ \top }} (\overline{\kappa }U_{3} )v_{3t} + 12\kappa (t)v_{3t}^{{ \top }} (\overline{\kappa }U_{3} )v_{3t} \hfill \\ \quad \;\; + [\overline{\kappa } - \kappa (t)]v_{4t}^{{ \top }} (\overline{\kappa }U_{1} )v_{4t} + 2v_{4t}^{{ \top }} (\overline{\kappa }U_{2} + R_{4} )(w_{\kappa } - w_{{\overline{\kappa }}} ) + \frac{{\overline{\kappa }}}{{\overline{\kappa } - \kappa (t)}}( * )^{{ \top }} U_{3} (w_{\kappa } - w_{{\overline{\kappa }}} ) \hfill \\ \quad \;\; + 3[\overline{\kappa } - \kappa (t)]( * )^{{ \top }} (\overline{\kappa }U_{1} )(v_{4t} - v_{8t} ) + 6(v_{4t} - v_{8t} )^{{ \top }} (\overline{\kappa }U_{2} + R_{4} )\{ w_{\kappa } + w_{{\overline{\kappa }}} - 2[\overline{\kappa } - \kappa (t)]v_{4t} \} \hfill \\ \quad \;\; + \frac{{3\overline{\kappa }}}{{\overline{\kappa } - \kappa (t)}}( * )^{{ \top }} U_{3} (w_{\kappa } + w_{{\overline{\kappa }}} ) - 12(w_{\kappa } + w_{{\overline{\kappa }}} )^{{ \top }} (\overline{\kappa }U_{3} )v_{4t} + 12[\overline{\kappa } - \kappa (t)]v_{4t}^{{ \top }} (\overline{\kappa }U_{3} )v_{4t} . \hfill \\ \end{gathered} $$
(30)

Using the RCI yields

$$ \frac{{\overline{\mu }}}{\mu (t)}( * )^{{ \top }} S_{3} (u_{t} - u_{\mu } ) + \frac{{\overline{\mu }}}{{\overline{\mu } - \mu (t)}}( * )^{{ \top }} S_{3} (u_{\mu } - u_{{\overline{\mu }}} ) \ge ( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {S_{3} } & {X_{3} } \\ * & {S_{3} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {u_{t} - u_{\mu } } \\ {u_{\mu } - u_{{\overline{\mu }}} } \\ \end{array} } \right], $$
(31)
$$ \frac{{3\overline{\mu }}}{\mu (t)}( * )^{{ \top }} S_{3} (u_{t} + u_{\mu } ) + \frac{{3\overline{\mu }}}{{\overline{\mu } - \mu (t)}}( * )^{{ \top }} S_{3} (u_{\mu } + u_{{\overline{\mu }}} ) \ge 3( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {S_{3} } & {X_{3} } \\ * & {S_{3} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {u_{t} + u_{\mu } } \\ {u_{\mu } + u_{{\overline{\mu }}} } \\ \end{array} } \right], $$
(32)
$$\,\frac{{\bar{\kappa }}}{{\kappa (t)}}( * )^{ { \top }} U_{3} (w_{t} - w_{\kappa } ) + \frac{{\bar{\kappa }}}{{\bar{\kappa } - \kappa (t)}}( * )^{ { \top }} U_{3} (w_{\kappa } - w_{{\bar{\kappa }}} ) \ge ( * )^{ { \top }} \left[ {\begin{array}{*{20}c} {U_{3} } & {X_{4} } \\ * & {U_{3} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {w_{t} - w_{\kappa } } \\ {w_{\kappa } - w_{{\bar{\kappa }}} } \\ \end{array} } \right],\,$$
(33)
$$ \frac{{3\overline{\kappa }}}{\kappa (t)}( * )^{{ \top }} U_{3} (w_{t} + w_{\kappa } ) + \frac{{3\overline{\kappa }}}{{\overline{\kappa } - \kappa (t)}}( * )^{{ \top }} U_{3} (w_{\kappa } + w_{{\overline{\kappa }}} ) \ge 3( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {U_{3} } & {X_{4} } \\ * & {U_{3} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {w_{t} + w_{\kappa } } \\ {w_{\kappa } + w_{{\overline{\kappa }}} } \\ \end{array} } \right]\,. $$
(34)

Applying Lemma 1 to \(V_{a} (t)\) and \(V_{d} (t)\) yields

$$ V_{a} (t) \le \xi_{t}^{{ \top }} \left( {{\text{sym}}\{ F_{1}^{{ \top }} e_{a} + F_{2}^{{ \top }} e_{b} \} + \mu (t)F_{1}^{{ \top }} {\mathbf{\mathbb{Q}}}_{3}^{ - 1} F_{1} + [\overline{\mu } - \mu (t)]F_{2}^{{ \top }} {\mathbf{\mathbb{Q}}}_{3}^{ - 1} F_{2} } \right)\xi_{t} , $$
(35)
$$ V_{d} (t) \le \xi_{t}^{{ \top }} \left( {{\text{sym}}\{ F_{3}^{{ \top }} e_{c} + F_{4}^{{ \top }} e_{d} \} + \kappa (t)F_{3}^{{ \top }} {\mathbf{\mathbb{Q}}}_{6}^{ - 1} F_{3} + [\overline{\kappa } - \kappa (t)]F_{4}^{{ \top }} {\mathbf{\mathbb{Q}}}_{6}^{ - 1} F_{4} } \right)\xi_{t} . $$
(36)

Denoting \(\vartheta = \frac{\mu (t)}{{\overline{\mu }}},\) when \(0 < \mu (t) < \overline{\mu },\) applying Lemma 1 to \(V_{b} (t)\) derives

$$ \begin{gathered} V_{b} (t) \ge \xi_{t}^{\rm T} \left\{ {\frac{{\overline{\mu } - \mu (t)}}{\mu (t)}e_{a}^{{ \top }} {\mathbf{\mathbb{Q}}}_{4} e_{a} + \frac{\mu (t)}{{\overline{\mu } - \mu (t)}}e_{b}^{{ \top }} {\mathbf{\mathbb{Q}}}_{5} e_{b} } \right\}\xi_{t} \hfill \\ \quad \quad \, = \xi_{t}^{\rm T} \left\{ {\left( {\frac{1}{\vartheta } - 1} \right)e_{a}^{{ \top }} {\mathbf{\mathbb{Q}}}_{4} e_{a} + \left( {\frac{1}{1 - \vartheta } - 1} \right)e_{b}^{{ \top }} {\mathbf{\mathbb{Q}}}_{5} e_{b} } \right\}\xi_{t} . \hfill \\ \end{gathered} $$
(37)

Based on the first inequality of (9), applying the RCI derives

$$ \frac{1}{\vartheta }e_{a}^{{ \top }} {\mathbf{\mathbb{Q}}}_{4} e_{a} + \frac{1}{1 - \vartheta }e_{b}^{{ \top }} {\mathbf{\mathbb{Q}}}_{5} e_{b} \ge ( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {{\mathbf{\mathbb{Q}}}_{4} } & {X_{1} } \\ * & {{\mathbf{\mathbb{Q}}}_{5} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {e_{a} } \\ {e_{b} } \\ \end{array} } \right]. $$
(38)

Similarly, denoting \(\varpi = \frac{\kappa (t)}{{\overline{\kappa }}},\) when \(0 < \kappa (t) < \overline{\kappa },\) applying Lemma 1 to \(V_{e} (t)\) yields

$$\begin{gathered} V_{e} (t) \ge \xi _{t} ^{ { \top }} \left\{ {\frac{{\bar{\kappa } - \kappa (t)}}{{\kappa (t)}}e_{c} ^{ { \top }} {\mathbf{\mathbb{Q}}}_{7} e_{c} + \frac{{\kappa (t)}}{{\bar{\kappa } - \kappa (t)}}e_{d} ^{ { \top }} {\mathbf{\mathbb{Q}}}_{8} e_{d} } \right\}\xi _{t} \hfill \\ \quad \quad \, = \xi _{t} ^{ { \top }} \left\{ {\left( {\frac{1}{\varpi } - 1} \right)e_{c} ^{ { \top }} {\mathbf{\mathbb{Q}}}_{7} e_{c} + \left( {\frac{1}{{1 - \varpi }} - 1} \right)e_{d} ^{ { \top }} {\mathbf{\mathbb{Q}}}_{8} e_{d} } \right\}\xi _{t} . \hfill \\ \end{gathered}$$
(39)

Based on the second inequality of (9), applying the RCI derives

$$ \frac{1}{\varpi }e_{c}^{{ \top }} {\mathbf{\mathbb{Q}}}_{7} e_{c} + \frac{1}{1 - \varpi }e_{d}^{{ \top }} {\mathbf{\mathbb{Q}}}_{8} e_{d} \ge ( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {{\mathbf{\mathbb{Q}}}_{7} } & {X_{2} } \\ * & {{\mathbf{\mathbb{Q}}}_{8} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {e_{c} } \\ {e_{d} } \\ \end{array} } \right]. $$
(40)

By the use of Lemma 1, one gets

$$ \begin{gathered} V_{c} (t) \ge 2( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {Q_{4} } & {\mathbf{0}} \\ {\mathbf{0}} & {2Q_{4} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {u_{t} - v_{1t} } \\ {u_{t} + v_{1t} - 2v_{5t} } \\ \end{array} } \right] + 2( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {Q_{5} } & {\mathbf{0}} \\ {\mathbf{0}} & {2Q_{5} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {u_{\mu } - v_{1t} } \\ {u_{\mu } - 4v_{1t} + 3v_{5t} } \\ \end{array} } \right] \hfill \\ \quad \quad \quad + 2( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {Q_{4} } & {\mathbf{0}} \\ {\mathbf{0}} & {2Q_{4} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {u_{\mu } - v_{2t} } \\ {u_{\mu } + 2v_{2t} - 3v_{6t} } \\ \end{array} } \right] + 2( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {Q_{5} } & {\mathbf{0}} \\ {\mathbf{0}} & {2Q_{5} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {u_{{\overline{\mu }}} - v_{2t} } \\ {u_{{\overline{\mu }}} - 4v_{2t} + 3v_{6t} } \\ \end{array} } \right]. \hfill \\ \end{gathered} $$
(41)
$$ \begin{gathered} V_{f} (t) \ge 2( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {Q_{7} } & {\mathbf{0}} \\ {\mathbf{0}} & {2Q_{7} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {w_{t} - v_{3t} } \\ {w_{t} + v_{3t} - 2v_{7t} } \\ \end{array} } \right] + 2( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {Q_{8} } & {\mathbf{0}} \\ {\mathbf{0}} & {2Q_{8} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {w_{\kappa } - v_{3t} } \\ {w_{\kappa } - 4v_{3t} + 3v_{7t} } \\ \end{array} } \right] \hfill \\ \quad \quad \quad + 2( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {Q_{7} } & {\mathbf{0}} \\ {\mathbf{0}} & {2Q_{7} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {w_{\kappa } - v_{4t} } \\ {w_{\kappa } + 2v_{4t} - 3v_{8t} } \\ \end{array} } \right] + 2( * )^{{ \top }} \left[ {\begin{array}{*{20}c} {Q_{8} } & {\mathbf{0}} \\ {\mathbf{0}} & {2Q_{8} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {w_{{\overline{\kappa }}} - v_{4t} } \\ {w_{{\overline{\kappa }}} - 4v_{4t} + 3v_{8t} } \\ \end{array} } \right]. \hfill \\ \end{gathered} $$
(42)

Based on the right inequalities of (10), the \(\dot{\mu }(t) -\) and \(\dot{\kappa }(t) -\) dependent terms in \(\dot{V}(t,u_{t} ,w_{t} )\) can be combined and estimated as follows:

$$ \dot{\mu }(t)\xi_{t}^{{ \top }} \Xi_{\mu } \xi_{t} \le \mu_{d} \xi_{t}^{{ \top }} \Xi_{\mu } \xi_{t} , $$
(43)
$$ \dot{\kappa }(t)\xi_{t}^{{ \top }} \Xi_{\kappa } \xi_{t} \le \kappa_{d} \xi_{t}^{{ \top }} \Xi_{\kappa } \xi_{t} . $$
(44)

From assumption condition (4), the following inequalities hold for diagonal matrices \(Y_{k} > {\mathbf{0}}\) \((k = 1,...,6)\) with appropriate dimensions

$$ \begin{gathered} \alpha_{i} (s) = - 2[\rho (w_{s} ) - \Theta_{1} w_{s} ]^{{ \top }} Y_{i} [\rho (w_{s} ) - \Theta_{2} w_{s} ] \ge 0, \hfill \\ \beta_{j} (s,r) = - 2\{ [\rho (w_{s} ) - \rho (w_{r} )] - \Theta_{1} (w_{s} - w_{r} )\}^{{ \top }} Y_{3 + j} \{ [\rho (w_{s} ) - \rho (w_{r} )] - \Theta_{2} (w_{s} - w_{r} )\} \ge 0, \hfill \\ \end{gathered} $$

where \(i,j = 1,2,3.\)

Hence, the next inequalities are true:

$$ \alpha_{1} (t) + \alpha_{2} (t - \kappa (t)) + \alpha_{3} (t - \overline{\kappa }) \ge 0, $$
(45)
$$ \beta_{1} (t,t - \kappa (t)) + \beta_{2} (t - \kappa (t),t - \overline{\kappa }) + \beta_{3} (t,t - \overline{\kappa }) \ge 0. $$
(46)

Using (2146) yields

$$ \dot{V}(t) \le \xi_{t}^{{ \top }} \Xi (\mu (t),\kappa (t))\xi_{t} , $$
(47)

where

$$ \Xi (\mu (t),\kappa (t)) = \Xi_{0} + \Xi^{\prime}_{1} + \mu (t)\Xi^{\prime}_{2} + [\overline{\mu } - \mu (t)]\Xi^{\prime}_{3} + \kappa (t)\Xi^{\prime}_{4} + [\overline{\kappa } - \kappa (t)]\Xi^{\prime}_{5} $$

with

$$ \begin{gathered} \Xi^{\prime}_{2} = \Xi_{2} + \Xi_{3} + F_{1}^{{ \top }} {\mathbb{Q}}_{3}^{ - 1} F_{1} ,\;\;\Xi^{\prime}_{3} = \Xi_{4} + \Xi_{5} + F_{2}^{{ \top }} {\mathbb{Q}}_{3}^{ - 1} F_{2} , \hfill \\ \Xi^{\prime}_{4} = \Xi_{6} + \Xi_{7} + F_{3}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{3} ,\;\;\Xi^{\prime}_{5} = \Xi_{8} + \Xi_{9} + F_{4}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{4} . \hfill \\ \end{gathered} $$

On account of the assumptions prior to Theorem 1, it is straightforward that inequality (47) is still true for \(\mu (t) = 0\) or \(\mu (t) = \overline{\mu }\) or \(\kappa (t) = 0\) or \(\kappa (t) = \overline{\kappa }.\)

Note that \(\Xi (\mu (t),\kappa (t))\) is linear about \(\mu (t)\) and \(\kappa (t)\), respectively, inequality \(\Xi (\mu (t),\kappa (t)) < {\mathbf{0}}\) can be handled non-conservatively by the following four corresponding boundary conditions:

$$ \begin{gathered} \Xi (0,0) = \Xi_{0} + \Xi^{\prime}_{1} + \overline{\mu }\Xi^{\prime}_{3} + \overline{\kappa }\Xi^{\prime}_{5} < {\mathbf{0}},\;\;\Xi (0,\overline{\kappa }) = \Xi_{0} + \Xi^{\prime}_{1} + \overline{\mu }\Xi^{\prime}_{3} + \overline{\kappa }\Xi^{\prime}_{4} < {\mathbf{0}}, \hfill \\ \Xi (\overline{\mu },0) = \Xi_{0} + \Xi^{\prime}_{1} + \overline{\mu }\Xi^{\prime}_{2} + \overline{\kappa }\Xi^{\prime}_{5} < {\mathbf{0}},\;\;\Xi (\overline{\mu },\overline{\kappa }) = \Xi_{0} + \Xi^{\prime}_{1} + \overline{\mu }\Xi^{\prime}_{2} + \overline{\kappa }\Xi^{\prime}_{4} < {\mathbf{0}}. \hfill \\ \end{gathered} $$

That is

$$ \begin{gathered} \Xi (0,0) = \Xi_{a} + \overline{\mu }F_{2}^{{ \top }} {\mathbb{Q}}_{3}^{ - 1} F_{2} + \overline{\kappa }F_{4}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{4} < {\mathbf{0}}, \hfill \\ \Xi (0,\overline{\kappa }) = \Xi_{b} + \overline{\mu }F_{2}^{{ \top }} {\mathbb{Q}}_{3}^{ - 1} F_{2} + \overline{\kappa }F_{3}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{3} < {\mathbf{0}}, \hfill \\ \Xi (\overline{\mu },0) = \Xi_{c} + \overline{\mu }F_{1}^{{ \top }} {\mathbb{Q}}_{3}^{ - 1} F_{1} + \overline{\kappa }F_{4}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{4} < {\mathbf{0}}, \hfill \\ \Xi (\overline{\mu },\overline{\kappa }) = \Xi_{d} + \overline{\mu }F_{1}^{{ \top }} {\mathbb{Q}}_{3}^{ - 1} F_{1} + \overline{\kappa }F_{3}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{3} < {\mathbf{0}}. \hfill \\ \end{gathered} $$

From the Schur complement Lemma, \(\Xi (0,0) < {\mathbf{0}}\) is equivalent to

$$\left[ {\begin{array}{*{20}c} {\Xi _{b} + \bar{\kappa }F_{3} ^{ { \top }} {\mathbb{Q}}_{6} ^{{ - 1}} F_{3} } & {\bar{\mu }F_{2} ^{ { \top }} } \\ * & { - \bar{\mu } {\mathbb{Q}}_{3} } \\ \end{array} } \right] < {\mathbf{0}}. $$

That is

$$ \left[ {\begin{array}{*{20}c} {\Xi_{a} } & {\overline{\mu }F_{2}^{{ \top }} } \\ * & { - \overline{\mu }{\mathbb{Q}}_{3} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {\overline{\kappa }F_{4}^{{ \top }} } \\ {\mathbf{0}} \\ \end{array} } \right](\overline{\kappa }{\mathbb{Q}}_{6} )^{ - 1} \left[ {\begin{array}{*{20}c} {\overline{\kappa }F_{4}^{{ \top }} } \\ {\mathbf{0}} \\ \end{array} } \right]^{{ \top }} < {\mathbf{0}}. $$
(48)

Again based on the Schur complement lemma, inequality (48) converts to the first inequality of (11). Similarly, \(\Xi (0,\overline{\kappa }) < {\mathbf{0}}\) is equivalent to

$$ \left[ {\begin{array}{*{20}c} {\Xi_{b} + \overline{\kappa }F_{3}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{3} } & {\overline{\mu }F_{2}^{{ \top }} } \\ * & { - \overline{\mu }{\mathbb{Q}}_{3} } \\ \end{array} } \right] < {\mathbf{0}}. $$

That is

$$\left[ {\begin{array}{*{20}c} {\Xi _{b} } & {\bar{\mu }F_{2} ^{ { \top }} } \\ * & { - \bar{\mu } {\mathbb{Q}}_{3} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {\bar{\kappa }F_{3} ^{ { \top }} } \\ {\mathbf{0}} \\ \end{array} } \right](\bar{\kappa } {\mathbb{Q}}_{6} )^{{ - 1}} \left[ {\begin{array}{*{20}c} {\bar{\kappa }F_{3} ^{ { \top }} } \\ {\mathbf{0}} \\ \end{array} } \right]^{ { \top }} < {\mathbf{0}}.$$
(49)

Again in view of the Schur complement lemma, inequality (49) converts to the second inequality of (11). Similarly, \(\Xi (\overline{\mu },0) < {\mathbf{0}}\) is equivalent to

$$ \left[ {\begin{array}{*{20}c} {\Xi_{c} + \overline{\kappa }F_{4}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{4} } & {\overline{\mu }F_{1}^{{ \top }} } \\ * & { - \overline{\mu }{\mathbb{Q}}_{3} } \\ \end{array} } \right] < {\mathbf{0}}. $$

That is

$$ \left[ {\begin{array}{*{20}c} {\Xi_{c} } & {\overline{\mu }F_{1}^{{ \top }} } \\ * & { - \overline{\mu }{\mathbb{Q}}_{3} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {\overline{\kappa }F_{4}^{{ \top }} } \\ {\mathbf{0}} \\ \end{array} } \right](\overline{\kappa }{\mathbb{Q}}_{6} )^{ - 1} \left[ {\begin{array}{*{20}c} {\overline{\kappa }F_{4}^{{ \top }} } \\ {\mathbf{0}} \\ \end{array} } \right]^{{ \top }} < {\mathbf{0}}. $$
(50)

Again on account of the Schur complement lemma, inequality (50) turns into the first inequality of (12). Similarly, \(\Xi (\overline{\mu },\overline{\kappa }) < {\mathbf{0}}\) is equivalent to

$$ \left[ {\begin{array}{*{20}c} {\Xi_{d} + \overline{\kappa }F_{3}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{3} } & {\overline{\mu }F_{1}^{{ \top }} } \\ * & { - \overline{\mu }{\mathbb{Q}}_{3} } \\ \end{array} } \right] < {\mathbf{0}}. $$

That is

$$ \left[ {\begin{array}{*{20}c} {\Xi_{d} } & {\overline{\mu }F_{1}^{{ \top }} } \\ * & { - \overline{\mu }{\mathbb{Q}}_{3} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {\overline{\kappa }F_{3}^{{ \top }} } \\ {\mathbf{0}} \\ \end{array} } \right](\overline{\kappa }{\mathbb{Q}}_{6} )^{ - 1} \left[ {\begin{array}{*{20}c} {\overline{\kappa }F_{3}^{{ \top }} } \\ {\mathbf{0}} \\ \end{array} } \right]^{{ \top }} < {\mathbf{0}}. $$
(51)

Again because of the Schur complement lemma, inequality (51) becomes the second inequality of (12). Thus, inequalities (812) mean that network (3) is asymptotic stable. This finishes the proof of Theorem 1.

Appendix 4

$$ \begin{gathered} \Xi_{0}^{g} = {\text{sym}}\left\{ {e_{1}^{{ \top }} P_{1g} e_{u} + e_{4}^{{ \top }} P_{2g} e_{v} } \right\} + \sum\limits_{l = 1}^{2} {\sum\limits_{{q \in {\mathfrak{N}}_{k}^{g} }}^ {\tilde{\psi }_{gq} (P_{lq} - Z_{lq} )} } , \hfill \\ \Xi_{a}^{g} = \Xi_{0}^{g} + \Xi^{\prime}_{1} + \overline{\mu }\Xi_{5} + \overline{\kappa }\Xi_{9} ,\quad \Xi_{b}^{g} = \Xi_{0}^{g} + \Xi^{\prime}_{1} + \overline{\mu }\Xi_{5} + \overline{\kappa }\Xi_{7} , \hfill \\ \Xi_{c}^{g} = \Xi_{0}^{g} + \Xi^{\prime}_{1} + \overline{\mu }\Xi_{3} + \overline{\kappa }\Xi_{9} ,\quad \Xi_{d}^{g} = \Xi_{0}^{g} + \Xi^{\prime}_{1} + \overline{\mu }\Xi_{3} + \overline{\kappa }\Xi_{7} . \hfill \\ \end{gathered} $$

Appendix 5: Proof of Theorem 2

Consider the following LKF:

$$ V_{g} (t) = V_{1g} (t) + V_{2g} (t) + \sum\limits_{j = 3}^{7} {V_{j} } (t), $$

where \(V_{1g} (t) = u_{t}^{{ \top }} P_{1g} u_{t} ,\;V_{2g} (t) = w_{t}^{{ \top }} P_{2g} w_{t} ,\) and \(V_{j} (t)(j = 3,4,...,7)\) are defined in Theorem 1.

Let \(\nabla\) designate the weak infinitesimal generator of the SP \(\{ r(t) = g\}_{t \ge 0}\), i.e.,

$$ \nabla V_{g} (t): = \mathop {\lim }\limits_{{\tau \to 0^{ + } }} \frac{1}{\tau }[{\mathfrak{E}}\left\{ {V_{g} (t + \tau )|r(t) = g} \right\} - V_{g} (t)]. $$

Then

$$ \nabla V_{g} (t) = \nabla V_{1g} (t) + \nabla V_{2g} (t) + \sum\limits_{j = 3}^{7} {\nabla V_{j} } (t). $$
(52)

For each \(r(t) = g \in {\mathfrak{N}}\), applying the law of conditional expectation and total probability gives

$$\begin{gathered} \nabla V_{{1g}} (t) = \mathop {\lim }\limits_{{\tau \to 0^{ + } }} \frac{1}{\tau }\left\{ { {\mathfrak{E}}\left[ {\sum\limits_{{q = 1,q \ne g}}^{N} {\Pr \{ r_{{j + 1}} = q,b_{{j + 1}} \le b + \tau |r_{j} = g,b_{{j + 1}} > b\} ( * )^{ { \top }} P_{{1q}} u_{{t + \tau }} } } \right.} \right. \hfill \\ \quad \quad \quad \quad \quad \quad \quad \;\;\left. {\left. { + \Pr \{ r_{{j + 1}} = g,b_{{j + 1}} \le b + \tau |r_{j} = g,b_{{j + 1}} > b\} ( * )^{ { \top }} P_{{1g}} u_{{t + \tau }} } \right] - ( * )^{ { \top }} P_{{1g}} u_{t} } \right\} \hfill \\ = \mathop {\lim }\limits_{{\tau \to 0^{ + } }} \frac{1}{\tau }\left\{ { {\mathfrak{E}}\left[ {\sum\limits_{{q = 1,q \ne g}}^{N} {\frac{{\Pr \{ b < b_{{j + 1}} \le b + \tau |r_{{j + 1}} = q,r_{j} = g\} }}{{\Pr \{ b_{{j + 1}} > b|r_{j} = g\} }}\frac{{\Pr \{ r_{{j + 1}} = q,r_{j} = g\} }}{{\Pr \{ r_{j} = g\} }}( * )^{ { \top }} P_{{1q}} u_{{t + \tau }} } } \right.} \right. \hfill \\ \quad \quad \quad \quad \;\;\left. {\left. {\;\quad + \frac{{\Pr \{ b_{{j + 1}} > b + \tau |r_{j} = g\} }}{{\Pr \{ b_{{j + 1}} > b|r_{j} = g\} }}( * )^{ { \top }} P_{{1g}} u_{{t + \tau }} } \right] - ( * )^{ { \top }} P_{{1g}} u_{t} } \right\} \hfill \\ = \mathop {\lim }\limits_{{\tau \to 0^{ + } }} \frac{1}{\tau }\left\{ { {\mathfrak{E}}\left[ {\sum\limits_{{q = 1,q \ne g}}^{N} {\frac{{\gamma _{{gq}} (D_{g} (b + \tau ) - D_{g} (b))}}{{1 - D_{g} (b)}}( * )^{ { \top }} P_{{1q}} u_{{t + \tau }} } + \frac{{1 - D_{g} (b + \tau )}}{{1 - D_{g} (b)}}( * )^{ { \top }} P_{{1g}} u_{{t + \tau }} } \right] - ( * )^{ { \top }} P_{{1g}} u_{t} } \right\}. \hfill \\ \end{gathered}$$

With a small \(\tau ,\) the first-order approximation of \(u_{t + \tau }\) is \(u_{t + \tau } = u_{t} + \tau \dot{u}_{t} + o(\tau ).\) Thus we come to

$$ \begin{gathered} \nabla V_{1g} (t) = \mathop {\lim }\limits_{{\tau \to 0^{ + } }} \frac{1}{\tau }\left\{ {{\mathfrak{E}}\left[ {\sum\limits_{q = 1,q \ne g}^{N} {\frac{{\gamma_{gq} (D_{g} (b + \tau ) - D_{g} (b))}}{{1 - D_{g} (b)}}( * )^{{ \top }} P_{1q} (u_{t} + \tau \dot{u}_{t} )} } \right.} \right. \hfill \\ \quad \quad \quad \quad \quad \quad \left. {\left. {\quad {\kern 1pt} \quad + \frac{{1 - D_{g} (b + \tau )}}{{1 - D_{g} (b)}}( * )^{{ \top }} P_{1g} (u_{t} + \tau \dot{u}_{t} )} \right] - ( * )^{{ \top }} P_{1g} u_{t} } \right\}. \hfill \\ \end{gathered} $$

Considering the condition that \(\mathop {\lim }\limits_{{\tau \to 0^{ + } }} [D_{g} (b + \tau ) - D_{g} (b)] = 0,\) it can be easily inferred that

$$ \nabla V_{1g} (t) = 2u_{t}^{{ \top }} {\mathfrak{E}}\left\{ {\mathop {\lim }\limits_{{\tau \to 0^{ + } }} \left[ {\frac{{1 - D_{g} (b + \tau )}}{{1 - D_{g} (b)}}P_{1g} } \right]} \right\}\dot{u}_{t} + ( * )^{{ \top }} {\mathfrak{E}}\left\{ {\mathop {\lim }\limits_{{\tau \to 0^{ + } }} {\mathbf{\mathbb{P}}}_{1g} (\tau )} \right\}u_{t} , $$

where

$$ {\mathbf{\mathbb{P}}}_{1g} (\tau ) = \sum\limits_{q = 1,q \ne g}^{N} {\frac{{\gamma_{gq} [D_{g} (b + \tau ) - D_{g} (b)]}}{{\tau [1 - D_{g} (b)]}}P_{1q} } + \frac{{D_{g} (b) - D_{g} (b + \tau )}}{{\tau [1 - D_{g} (b)]}}P_{1g} . $$

According to the properties of the CDF, one obtains

$$ \mathop {\lim }\limits_{{\tau \to 0^{ + } }} \frac{{1 - D_{g} (b + \tau )}}{{1 - D_{g} (b)}} = 1,\;\;\mathop {\lim }\limits_{{\tau \to 0^{ + } }} \frac{{D_{g} (b + \tau ) - D_{g} (b)}}{{\tau [1 - D_{g} (b)]}} = \psi_{g} (b), $$

where \(\psi_{g} (b)\) expresses the TR of the system jump from mode \(g\), which satisfies (see [39]) \(\psi_{gq} (b) =\) \(\gamma_{gq} \psi_{g} (b),\) \(g \ne q,\) then it follows that

$$ \nabla V_{1g} (t) = 2u_{t}^{{ \top }} P_{1g} \dot{u}_{t} + ( * )^{{ \top }} \sum\limits_{q = 1}^{N} {\tilde{\psi }_{gq} P_{1q} u_{t} ,} $$
(53)

where \(\tilde{\psi }_{gq} : = {\mathfrak{E}}[\psi_{gq} (b)] = \int_{0}^{ + \infty } {\psi_{gq} (b)f_{g} (b)} {\text{d}}b.\)

Similarly, one has

$$ \nabla V_{2g} (t) = 2w_{t}^{{ \top }} P_{2g} \dot{w}_{t} + ( * )^{{ \top }} \sum\limits_{q = 1}^{N} {\tilde{\psi }_{gq} P_{2q} w_{t} } . $$
(54)

If the information of TRs is not completely available, it is easy to find \(\sum\nolimits_{q = 1}^{N} {\tilde{\psi }_{gq} } = 0,\;\tilde{\psi }_{gq} \ge 0,\;\forall q \ne g,\;q \in {\mathfrak{N}}\) from \(\sum\nolimits_{q = 1}^{N} {\psi_{gq} (b)} = 0,\;\psi_{gq} (b) \ge 0,\;\forall q \ne g,\;q \in {\mathfrak{N}}.\) Thus for any matrices \(Z_{lg} = Z_{lg}^{{ \top }}\) satisfying (13) and (14), one has

$$\begin{aligned} \sum\limits_{{q = 1}}^{N} {\tilde{\psi }_{{gq}} P_{{lq}} } & = \sum\limits_{{q = 1}}^{N} {\tilde{\psi }_{{gq}} (P_{{lq}} - Z_{{lq}} )} \hfill \\ & \quad = \sum\limits_{{q \in {\mathfrak{N}}_{k}^{g} }}^{{}} {\tilde{\psi }_{{gq}} (P_{{lq}} - Z_{{lq}} )} + \sum\limits_{{q \in {\mathfrak{N}}_{u}^{g} }}^{{}} {\tilde{\psi }_{{gq}} (P_{{lq}} - Z_{{lq}} )} \hfill \\ & \quad \le \sum\limits_{{q \in {\mathfrak{N}}_{k}^{g} }}^{{}} {\tilde{\psi }_{{gq}} (P_{{lq}} - Z_{{lq}} )} . \hfill \\ \end{aligned}$$
(55)

Combining (2446), (5255) and taking mathematical expectation on both sides yields

$$ {\mathfrak{E}\{ }\nabla V_{g} (t)\} \le \xi_{t}^{{ \top }} \Xi_{g} (\mu (t)\kappa (t))\xi_{t} , $$
(56)

where

$$\Xi _{g} (\mu (t),\kappa (t)) = \Xi _{0}^{g} + \Xi ^{\prime}_{1} + \mu (t)\Xi ^{\prime\prime}_{2} + [\bar{\mu } - \mu (t)]\Xi ^{\prime\prime}_{3} + \kappa (t)\Xi ^{\prime\prime}_{4} + [\bar{\kappa } - \kappa (t)]\Xi ^{\prime\prime}_{5} ,$$

with

$$ \Xi^{\prime\prime}_{2} = \Xi_{3} + F_{1}^{{ \top }} {\mathbb{Q}}_{3}^{ - 1} F_{1} ,\;\;\Xi^{\prime\prime}_{3} = \Xi_{5} + F_{2}^{{ \top }} {\mathbb{Q}}_{3}^{ - 1} F_{2} ,\;\;\Xi^{\prime\prime}_{4} = \Xi_{7} + F_{3}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{3} ,\;\;\Xi^{\prime\prime}_{5} = \Xi_{9} + F_{4}^{{ \top }} {\mathbb{Q}}_{6}^{ - 1} F_{4} . $$

Next, following the same line as Theorem 1, one can conclude Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, CD., Zhang, Z., Lu, Y. et al. Stochastic stability for delayed semi-Markovian genetic regulatory networks with partly unknown transition rates by employing new integral inequalities. Neural Comput & Applic 34, 13649–13666 (2022). https://doi.org/10.1007/s00521-022-07177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07177-6

Keywords

Navigation