Skip to main content
Log in

Design of large-scale real-size steel structures using various modified grasshopper optimization algorithms

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

A Correction to this article was published on 09 June 2022

This article has been updated

Abstract

In this study, to improve the algorithmic performance of standard grasshopper optimization algorithm (GOA) that mimics the foraging characterizations of grasshoppers as in swarms, four modified versions of which are proposed to solve large-scale real-size complex both truss and frame type steel structures. All proposed GOA encoded are supplied reciprocatively data transfer with structural analysis software (SAP2000) to easily get the structural responses via open application programming interface functions. Initially, the algorithmic performances of standard GOA and its proposed modified versions are evaluated on two small-size benchmark engineering design problems, namely pressure vessel and grain train design problems. And then, a 160-bar space steel pyramid, a 693-bar space braced steel barrel vault, and a 455-member spatial braced steel frame are considered as large-scale real-size structural design problems. These structures are optimally designed to reach the best feasible economic structures with minimum design weights while satisfying the structural behavior limitations such as displacement, drift, strength, and stability that are taken from specifications of the American Institute of Steel Construction-Load and Resistance Factor Design. Consequently, the performances of all proposed GO algorithms in finding the optimum designs of large-scale real-size steel structures are compared and evaluated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. AISC (1999) Load and resistance factor design specification for structural steel buildings. Illinois, Chicago

    Google Scholar 

  2. Ali EA, Abd Elazim SM (2019) Power system stabilizers design using grasshopper optimization algorithm—IARAS. Int J Pow Syst 4:31–38

    Google Scholar 

  3. Amaireh AA, Alzoubi A, Dib NI (2017) Design of linear antenna arrays using antlion and grasshopper optimization algorithms. In: Jordan conference on applied electrical engineering and computing technologies (AEECT). pp 1–6

  4. Animasaun IL, Ibraheem RO, Mahanthesh B, Babatunde HA (2019) A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin J Phys 60:676–687. https://doi.org/10.1016/J.CJPH.2019.06.007

    Article  MathSciNet  Google Scholar 

  5. Animasaun IL, Yook SJ, Muhammad T, Mathew A (2022) Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surf Interfaces 28:101654. https://doi.org/10.1016/J.SURFIN.2021.101654

    Article  Google Scholar 

  6. Arora S, Singh S, Yetilmezsoy K (2018) A modified butterfly optimization algorithm for mechanical design optimization problems. J Braz Soc Mech Sci Eng 40:1–17. https://doi.org/10.1007/S40430-017-0927-1/TABLES/11

    Article  Google Scholar 

  7. Artar M, Carbas S (2021) Discrete sizing design of steel truss bridges through teaching-learning-based and biogeography-based optimization algorithms involving dynamic constraints. Structures 34:3533–3547. https://doi.org/10.1016/J.ISTRUC.2021.09.101

    Article  Google Scholar 

  8. Atmaca B (2021) Size and post-tensioning cable force optimization of cable-stayed footbridge. Structures 33:2036–2049. https://doi.org/10.1016/J.ISTRUC.2021.05.050

    Article  Google Scholar 

  9. Awad R (2021) Sizing optimization of truss structures using the political optimizer (PO) algorithm. Structures 33:4871–4894. https://doi.org/10.1016/J.ISTRUC.2021.07.027

    Article  Google Scholar 

  10. Azad SK (2021) Design optimization of real-size steel frames using monitored convergence curve. Struct Multidiscip Opt 63:267–288. https://doi.org/10.1007/s00158-020-02692-3

    Article  Google Scholar 

  11. Belevičius R, Mačiūnas D, Šešok D (2019) Multi-objective global optimization of grillage-type engineering structures using advanced metaheuristics. Acta et Commentationes Univ Tartuensis de Math 23:225–243. https://doi.org/10.12697/ACUTM.2019.23.20

    Article  MathSciNet  MATH  Google Scholar 

  12. Bianchi L, Dorigo M, Luca AE et al (2008) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput. https://doi.org/10.1007/s11047-008-9098-4

    Article  MATH  Google Scholar 

  13. Carbas S, Artar M (2021) Optimum design of cold-formed steel frames via five novel nature-inspired metaheuristic algorithms under consideration of seismic loading. Structures 33:4011–4030. https://doi.org/10.1016/J.ISTRUC.2021.06.096

    Article  Google Scholar 

  14. Carbas S, Saka MP (2013) Efficiency of improved harmony search algorithm for solving engineering optimization problems. Iran Univ Sci Technol 3:99–114

    Google Scholar 

  15. Carbas S, Toktas A, Ustun D (2021) Nature-inspired metaheuristic algorithms for engineering optimization applications. Springer Singapore, Singapore

    Book  Google Scholar 

  16. Chou JS, Ngo NT (2016) Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns. Appl Energy 177:751–770. https://doi.org/10.1016/J.APENERGY.2016.05.074

    Article  Google Scholar 

  17. Coello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127. https://doi.org/10.1016/S0166-3615(99)00046-9

    Article  Google Scholar 

  18. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of ECAL91 European Conference on Artificial Life. Elsevier Publishing, Amsterdam, pp 134–142

  19. Deb K (1997) GeneAS: a robust optimal design technique for mechanical component design. Evol Algorith Eng Appl. https://doi.org/10.1007/978-3-662-03423-1_27

    Article  Google Scholar 

  20. Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design - Publications of the IAS Fellows. Comput Sci Inform 26:30–45

    Google Scholar 

  21. Dinh-Cong D, Nguyen-Thoi T, Nguyen DT (2020) A FE model updating technique based on SAP2000-OAPI and enhanced SOS algorithm for damage assessment of full-scale structures. Appl Soft Comput 89:106100. https://doi.org/10.1016/J.ASOC.2020.106100

    Article  Google Scholar 

  22. Dwivedi S (2021) Detecting anonymous attacks in wireless communication medium using adaptive grasshopper optimization algorithm. Cogn Syst Res 69:1–21. https://doi.org/10.1016/J.COGSYS.2021.04.003

    Article  Google Scholar 

  23. Erdal F, Doan E, Saka MP (2011) Optimum design of cellular beams using harmony search and particle swarm optimizers. J Constr Steel Res 67:237–247. https://doi.org/10.1016/J.JCSR.2010.07.014

    Article  Google Scholar 

  24. Erdal F, Dogan E, Tunca O, Tas S (2015) Optimum design of corrugated web beams using stochastic search techniques. In: Third international conference on advances in civil, structural and environmental engineering-ACSEE 2015. Institute of Research Engineers and Doctors, LLC, Zurich/Switzerland, pp 121–125

  25. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172. https://doi.org/10.1016/J.ESWA.2018.06.023

    Article  Google Scholar 

  26. Farshchin M, Maniat M, Camp C, v., Pezeshk S, (2018) School based optimization algorithm for design of steel frames. Eng Struct 171:326–335. https://doi.org/10.1016/J.ENGSTRUCT.2018.05.085

    Article  Google Scholar 

  27. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  28. Gao L, Zou D, Ge Y, Jin W (2010) Solving pressure vessel design problems by an effective global harmony search algorithm. In: Chinese control and decision conference. pp 4031–4035

  29. Gholizadeh S, Ebadijalal M (2018) Performance based discrete topology optimization of steel braced frames by a new metaheuristic. Adv Eng Softw 123:77–92. https://doi.org/10.1016/J.ADVENGSOFT.2018.06.002

    Article  Google Scholar 

  30. Gholizadeh S, Milany A (2018) An improved fireworks algorithm for discrete sizing optimization of steel skeletal structures. Eng Optim 50:1829–1849. https://doi.org/10.1080/0305215X.2017.1417402

    Article  MathSciNet  Google Scholar 

  31. Goel N, Grover B, Anuj et al (2020) Modified grasshopper optimization algorithm for detection of autism spectrum disorder. Phys Commun 41:101115. https://doi.org/10.1016/J.PHYCOM.2020.101115

    Article  Google Scholar 

  32. Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  33. Hasançebi O, Azad SK (2019) Discrete sizing of steel frames using adaptive dimensional search algorithm. Periodica Polytech Civ Eng 63:1062–1079. https://doi.org/10.3311/PPCI.14746

    Article  Google Scholar 

  34. Heydari A, Memarzadeh G, Davide G et al (2021) Interval prediction algorithm and optimal scenario making model for wind power producers bidding strategy. Opt Eng 22:1807–1829. https://doi.org/10.1007/s11081-021-09610-6

    Article  MathSciNet  MATH  Google Scholar 

  35. Jumani TA, Mustafa MW, Rasid MM et al (2018) Optimal voltage and frequency control of an islanded microgrid using grasshopper optimization algorithm. Energies 11:3191. https://doi.org/10.3390/EN11113191

    Article  Google Scholar 

  36. Kannan BK, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411. https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

  37. Kaveh A, Ghazaan MI (2018) Meta-heuristic algorithms for optimal design of real-size structures. Meta-Heuristic Algorith Opt Des Real Size Struct. https://doi.org/10.1007/978-3-319-78780-0

    Article  MATH  Google Scholar 

  38. Kaveh A, Khodadadi N, Farahamand Azar B, Talatahari S (2021) Optimal design of large-scale frames with an advanced charged system search algorithm using box-shaped sections. Eng Comput 37:2521–2541. https://doi.org/10.1007/s00366-020-00955-7

    Article  Google Scholar 

  39. Kaveh A, Seddighian MR (2020) Simultaneously multi-material layout, and connectivity optimization of truss structures via an Enriched Firefly Algorithm. Structures 27:2217–2231. https://doi.org/10.1016/J.ISTRUC.2020.07.029

    Article  Google Scholar 

  40. Kaveh A, Vaez SRH, Hosseini P (2018) Simplified dolphin echolocation algorithm for optimum design of frame. Smart Struct Syst 21:321–333. https://doi.org/10.12989/SSS.2018.21.3.321

    Article  Google Scholar 

  41. Kazemzadeh Azad S (2017) Seeding the initial population with feasible solutions in metaheuristic optimization of steel trusses. Eng Opt 50:89–105. https://doi.org/10.1080/0305215X20171284833

    Article  MathSciNet  Google Scholar 

  42. Kazemzadeh Azad S, Aminbakhsh S (2021) High-dimensional optimization of large-scale steel truss structures using guided stochastic search. Structures 33:1439–1456. https://doi.org/10.1016/J.ISTRUC.2021.05.035

    Article  Google Scholar 

  43. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks. IEEE, pp 1942–1948

  44. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798. https://doi.org/10.1016/J.COMPSTRUC.2004.01.002

    Article  Google Scholar 

  45. Liu J, Wang A, Qu Y, Wang W (2018) Coordinated operation of multi-integrated energy system based on linear weighted sum and grasshopper optimization algorithm. IEEE Access 6:42186–42195. https://doi.org/10.1109/ACCESS.2018.2859816

    Article  Google Scholar 

  46. Maheri MR, Talezadeh M (2018) An enhanced imperialist competitive algorithm for optimum design of skeletal structures. Swarm Evol Comput 40:24–36. https://doi.org/10.1016/J.SWEVO.2017.12.001

    Article  Google Scholar 

  47. Mortazavi A (2020) A new fuzzy strategy for size and topology optimization of truss structures. Appl Soft Comput 93:106412. https://doi.org/10.1016/J.ASOC.2020.106412

    Article  Google Scholar 

  48. OAPI Technical Knowledge Base-Computer ans Structures, Inc. https://wiki.csiamerica.com/display/kb/OAPI. Accessed 4 Mar 2022

  49. Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for solving constrained engineering optimization problems. Lect Notes Comput Sci 3612:582–591. https://doi.org/10.1007/11539902_71

    Article  Google Scholar 

  50. Raeesi F, Azar BF, Veladi H, Talatahari S (2020) An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm. Structures 26:406–416. https://doi.org/10.1016/J.ISTRUC.2020.04.026

    Article  Google Scholar 

  51. Ramaswamy GS, Eekhout M, Suresh GR (2002) Analysis, design and construction of steel space frames. Thomas Telford

  52. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112:223–229. https://doi.org/10.1115/1.2912596

    Article  Google Scholar 

  53. Sap2000 (2008) Integrated finite element analysis and design of structures

  54. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/J.ADVENGSOFT.2017.01.004

    Article  Google Scholar 

  55. Shah NA, Animasaun IL, Ibraheem RO et al (2018) Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J Mol Liq 249:980–990. https://doi.org/10.1016/J.MOLLIQ.2017.11.042

    Article  Google Scholar 

  56. Sun X, Animasaun IL, Swain K et al (2021) Significance of nanoparticle radius, inter-particle spacing, inclined magnetic field, and space-dependent internal heating: the case of chemically reactive water conveying copper nanoparticles. ZAMM J Appl Math Mech Zeitschrift für Angewandte Math Mech. https://doi.org/10.1002/ZAMM.202100094

    Article  Google Scholar 

  57. Truong VH, Kim SE (2018) Reliability-based design optimization of nonlinear inelastic trusses using improved differential evolution algorithm. Adv Eng Softw 121:59–74. https://doi.org/10.1016/J.ADVENGSOFT.2018.03.006

    Article  Google Scholar 

  58. Tsiptsis IN, Liimatainen L, Kotnik T, Niiranen J (2019) Structural optimization employing isogeometric tools in Particle Swarm Optimizer. J Build Eng 24:100761. https://doi.org/10.1016/J.JOBE.2019.100761

    Article  Google Scholar 

  59. Uray E, Carbas S, Geem ZW, Kim S (2022) Parameters optimization of taguchi method integrated hybrid harmony search algorithm for engineering design problems. Mathematics. https://doi.org/10.3390/math10030327

    Article  Google Scholar 

  60. Ustun D (2020) An enhanced adaptive butterfly optimization algorithm rigorously verified on engineering problems and implemented to ISAR image motion compensation. Eng Comput (Swansea, Wales) 37:3543–3566. https://doi.org/10.1108/EC-02-2020-0126/FULL/PDF

    Article  Google Scholar 

  61. VB (2018) Microsoft Visual Basic Programming Language

  62. Wu M, Xiong N, Vasilakos AV et al (2020) RNN-K: a reinforced newton method for consensus-based distributed optimization and control over multiagent systems. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3011819

    Article  Google Scholar 

  63. Zhang C, Wang HP (2007) Mixed-discrete nonlinear optimization with simulated annealing. Eng Opt 21:277–291. https://doi.org/10.1080/03052159308940980

    Article  Google Scholar 

  64. Zhang Q, Liu W, Meng X et al (2017) Vector coevolving particle swarm optimization algorithm. Inf Sci 394–395:273–298. https://doi.org/10.1016/J.INS.2017.01.038

    Article  Google Scholar 

  65. Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23:595–622. https://doi.org/10.1007/S11831-015-9151-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Tunca.

Ethics declarations

Conflict of interest

No potential conflict of interest is reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydogdu, I., Ormecioglu, T.O., Tunca, O. et al. Design of large-scale real-size steel structures using various modified grasshopper optimization algorithms. Neural Comput & Applic 34, 13825–13848 (2022). https://doi.org/10.1007/s00521-022-07196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07196-3

Keywords

Navigation