Skip to main content
Log in

A comparative study on prediction of survival event of heart failure patients using machine learning algorithms

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Cardiovascular diseases cause approximately 17 million deaths each year and 31% of deaths worldwide. These diseases generally occur as myocardial infarction and heart failure. The survival status, which we used as a target in our classification study, indicates that the patient died or survived before the end of the follow-up period, which is a mean of 130 days. Various machine learning classifiers have been preferred to both predict survival of patients and rank the characteristics corresponding to the most important risk factors. For this purpose, the data set that is occurred totally 299 samples is traditionally divided into 70% for training and 30% for test cluster to be used in machine learning algorithms, with have been analyzed with many methods such as Artificial Neural Networks, Fine Gaussian SVM, Fine KNN, Weighted KNN, Subspace KNN, Boosted Trees, and Bagged Trees. As a result, according to the data obtained, it has been seen that there are algorithms that can predict heart failure diagnosis with full accuracy (100%). Thus, it was concluded that it is appropriate to use machine learning algorithms to predict whether a heart failure patient will survive. This study has the potential to be used as a new supportive tool for doctors when predicting whether a heart failure patient will survive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rozie F, Hadary F, Wigyarianto FTP (2016) rancang bangun alat monitoring jumlah denyut nadi/jantung berbasis android. J Teknik Elektro Univ Tanjungpura 1(1):1–10

    Google Scholar 

  2. Rahayu S, Purnama JJ, Pohan AB, Nugraha FS, Nurdiani S, Hadianti S (2020) Prediction of survival of heart failure patients using random forest. Jurnal Pilar Nusa Mandiri 16(2):255–260

    Google Scholar 

  3. World Health Organization web page, https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_2. Accessed 2 May 2021.

  4. Meng F, Zhang Z, Hou X, Qian Z, Wang Y, Chen Y, Zou J (2019) Machine learning for prediction of sudden cardiac death in heart failure patients with low left ventricular ejection fraction: study protocol for a retro prospective multicenter registry in China. BMJ Open 9(5):023724

    Article  Google Scholar 

  5. Erdaş ÇB, Ölçer D (2020) A machine learning-based approach to detect survival of heart failure patients. TIPTEKNO. 2020:1–4

    Google Scholar 

  6. Chicco D, Giuseppe J (2020) Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med Inform Decis Mak 20(1):16

    Article  Google Scholar 

  7. Nauta JF, Jin X, Hummel YM, Voors AA (2018) Markers of left ventricular systolic dysfunction when left ventricular ejection fraction is normal. Eur J Heart Fail 20:1636–1638

    Article  Google Scholar 

  8. Gianluigi S, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3(1):7

    Article  Google Scholar 

  9. Tan LB, Williams SG, Tan DK, Cohen-Solal A (2010) So many definitions of heart failure: are they all universally valid? A critical appraisal, Expert review of cardiovascular therapy 8(2):217–228

    Article  Google Scholar 

  10. C. Wilstrup, C. Cave, Combining symbolic regression with the Cox proportional hazards model improves prediction of heart failure deaths. medRxiv (2021).

  11. Salim SV, Alvaro A, Emelia JB, Marcio SB, Clifton WC, April PC et al (2020) Heart disease and stroke statistics| 2020 update: A report from the american heart association. Circulation 141(9):139–596

    Google Scholar 

  12. Pfeffer MA, Braunwald E (2016) Treatment of heart failure with preserved ejection fraction reflections on its treatment with an aldosterone antagonist. J Am Med Assoc JAMA Cardiol 1(1):7–8

    Article  Google Scholar 

  13. Nanayakkara S, Kaye DM (2017) Targets for heart failure with preserved ejection fraction. Clin Pharmacol Ther 102:228–237

    Article  Google Scholar 

  14. Mesquita ET, Grion DC, Kubrusly MC, Silva BBFF, Santos ÉAR (2018) Phenotype mapping of heart failure with preserved ejection fraction. Int J Cardiovasc Sci 31(6):652–661

    Google Scholar 

  15. Katz DH, Deo RC, Aguilar FG, Selvaraj S, Martinez EE, Beussink-Nelson L, Kim K-YA, Peng J, Irvin MR, Tiwari H, Rao DC, Arnett DK, Shah SJ (2017) Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10(3):275–284

    Article  Google Scholar 

  16. Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, Miller CA (2017) Biological phenotypes of heart failure with preserved ejection fraction. J Am Coll Cardiol 70(17):2186–2200

    Article  Google Scholar 

  17. Costa LL et al (2020) Quality of life of chronic heart failure patients. Open Journal of Nursing 10(9):831–857

    Article  Google Scholar 

  18. Wajner A et al (2017) Causes and predictors of in-hospital mortality in patients admitted with or for heart failure at a tertiary hospital in Brazil. Arq Bras Cardiol 109(4):321–330

    Google Scholar 

  19. Moyehodie YA, Yesuf KM, Sied AA, Masresha BM (2021) Determinants of pulse rate change and time-to default from treatment among congestive heart failure patients in felege-hiwot referral hospital, bahir dar, ethiopia; comparison of separate and joint models. Res Square

  20. Martinez-Amezcua P, Haque W, Khera R, Kanaya AM, Sattar N, Lam CS et al (2020) The upcoming epidemic of heart failure in South Asia. Circul Heart Fail 13(10):7218

    Article  Google Scholar 

  21. Chaturvedi V, Parakh N, Seth S, Bhargava B, Ramakrishnan S, Roy A, Anand K et al (2016) Heart failure in India: The INDUS (INDia Ukieri study) study. J Pract Cardiovasc Sci 2:28–35

    Article  Google Scholar 

  22. Huffman MD, Prabhakaran D (2010) Heart failure: epidemiology and prevention in India. Natl Med J India 23:283

    Google Scholar 

  23. Ishaq A, Sadiq S, Umer M, Ullah S, Mirjalili S, Rupapara V, Nappi M (2021) Improving the prediction of heart failure patients’ survival using SMOTE and effective data mining techniques. IEEE Access 9:39707–39716

    Article  Google Scholar 

  24. Buchan TA, Ross HJ, McDonald M, Billia F, Delgado D, Posada JD, Luk A, Guyatt GH, Alba AC (2019) Physician prediction versus model predicted prognosis in ambulatory patients with heart failure. J Heart Lung Transpl 38(4):381

    Article  Google Scholar 

  25. Chapman B, DeVore AD, Mentz RJ, Metra M (2019) Clinical profiles in acute heart failure: an urgent need for a new approach. Eur Soc Cardiol ESC Heart Fail. 6(3):464–474

    Article  Google Scholar 

  26. Poffo MR, Assis AVD, Fracasso M, Londero-Filho OM, Alves SMDM, Bald AP, Schmitt CB, Alves-Filho NR (2017) Profile of patients hospitalized for heart failure in tertiary care hospital. Int J Cardiovasc Sci. 30:189–198

    Google Scholar 

  27. Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, Berman DS, Leipsic J, Nieman K, Andreini D, Pontone G, Schoepf UJ, Shaw LJ, Chang H-J, Narula J, Bax JJ, Guan Y, Min JK (2018) Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J 40(24):1975–1986

    Article  Google Scholar 

  28. Al’Aref SJ, Singh G, van Rosendael AR, Kolli KK, Ma X, Maliakal G, Pandey M, Lee BC, Wang J, Xu Z, Zhang Y, Min JK, Wong SC, Minutello RM (2019) Determinants of in-hospital mortality after percutaneous coronary intervention: a machine learning approach. J Am Heart Assoc 8(5):11160

    Article  Google Scholar 

  29. Dunn WB, Broadhurst DI, Deepak SM, Buch MH, McDowell G, Spasic I, Ellis DI, Brooks N, Kell DB, Neysesc L (2007) Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics 3(4):413–426

    Article  Google Scholar 

  30. Gallagher J, McCormack D, Zhou S, Ryan F, Watson C, McDonald K, Ledwidge MT (2019) A systematic review of clinical prediction rules for the diagnosis of chronic heart failure. Eur Soc Cardiol ESC Heart Fail. 6(3):499–508

    Article  Google Scholar 

  31. Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley GW, McClelland R, Gomes AS, Folsom AR, Shea S, Guallar E, Bluemke DA, Lima JAC (2017) Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res 121(9):1092–1101

    Article  Google Scholar 

  32. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12(4):174944

    Article  Google Scholar 

  33. Shilaskar S, Ghatol A (2013) Feature selection for medical diagnosis: evaluation for cardiovascular diseases. Expert Syst Appl 40(10):4146–4153

    Article  Google Scholar 

  34. Panahiazar M, Taslimitehrani V, Pereira N, Pathak J (2015) Using EHRs and machine learning for heart failure survival analysis. Stud Health Technol Inf 216:40

    Google Scholar 

  35. Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI (2017) Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques, Comput Struct. Biotechnol J 15:26–47

    Google Scholar 

  36. Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, Dahlström U, O’Connor CM, Felker GM, Desai NR (2018) Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc 7(8):8081

    Article  Google Scholar 

  37. Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, Williams BA, Haggerty CM, Fornwalt BK (2019) Predicting survival from large echocardiography and electronic health record datasets: optimization with machine learning. JACC Cardiovasc Imaging 12(4):681–689

    Article  Google Scholar 

  38. Sengupta PP, Kulkarni H, Narula J (2018) Prediction of abnormal myocardial relaxation from signal processed surface ECG. J Am Coll Cardiol 71(15):1650–1660

    Article  Google Scholar 

  39. Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U, Min JK, Tang WHW, Halperin JL, Narayan SM (2019) Deep learning for cardiovascular medicine: a practical primer. Eur Heart J 40:2058–2073

    Article  Google Scholar 

  40. Poolsawad N, Moore L, Kambhampati C, Cleland JGF (2015) Issues in the mining of heart failure datasets. Int J Autom Comput 11(2):162–179

    Article  Google Scholar 

  41. Buzaev IV, Plechev VV, Nikolaeva IE, Galimova RM (2016) Artificial intelligence: neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes. Chron Dis Transl Med 2(3):166–172

    Google Scholar 

  42. Benjamins J-W, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P (2019) A primer in artificial intelligence in cardiovascular medicine. Neth Heart J 27:392–402

    Article  Google Scholar 

  43. Bello GA, Dawes TJW, Duan J, Biffi C, de Marvao A, Howard LSGE, Gibbs JSR, Wilkins MR, Cook SA, Rueckert D, O’Regan DP (2019) Deep-learning cardiac motion analysis for human survival prediction. Nat Mach Intell 1(2):95–104

    Article  Google Scholar 

  44. Fonarow CG, Adams KF, Abraham WT, Yancy CW, Boscardin WJ (2005) Risk stratication for in-hospital mortality in acutely decompensated heart failure: Classification and regression tree analysis. JAMA 293(5):572–580

    Article  Google Scholar 

  45. Wayne CL, Dariush M, David TL, Santosh CS, Stefan DA, Anne BC, Inder A, Aldo M, Paul B, Mark DS, Bertram P, Philip APW, Douglas LM, Milton P (2006) The seattle heart failure model: prediction of survival in heart failure. Circulation 113(11):1424–1433

    Article  Google Scholar 

  46. Zemmal N, Azizi N, Sellami M, Cheriguene S, Ziani A, AlDwairi M, Dendani N (2020) Particle swarm optimization based swarm intelligence for active learning improvement: application on medical data classification. Cogn Comput 12(5):991–1010

    Article  Google Scholar 

  47. Hsu CN, Liu CL, Tain YL, Kuo CY, Lin YC (2020) Machine learning model for risk prediction of community-acquired acute kidney injury hospitalization from electronic health records: development and validation study. J Med Internet Res 22(8):16903

    Article  Google Scholar 

  48. Al-Shibli M (2020) Hybrid artificially intelligent multi-layer blockchain and bitcoin cryptology (AI-MLBBC): anti-crime-theft smart wall defense. Encycl Criminal Activit Deep Web 2020:1089–1111

    Article  Google Scholar 

  49. Jiang Y, Bao X, Hao S, Zhao H, Li X, Wu X (2020) Monthly streamflow forecasting using ELM-IPSO based on phase space reconstruction. Water Resour Manage 34(11):3515–3531

    Article  Google Scholar 

  50. He L, Chen S, Liang Y, Hou M, Chen J (2020) Infilling the missing values of groundwater level using time and space series: case of Nantong City, east coast of China. Earth Sci Inf 13(4):1445–1459

    Article  Google Scholar 

  51. Ansarullah SI, Kumar P (2019) A systematic literature review on cardiovascular disorder identication using knowledge mining and machine learning method. Int J Recent Technol Eng 7(6S):1009–1015

    Google Scholar 

  52. Mary MMA (2020) Heart disease prediction using machine learning techniques: a survey. Int J Res Appl Sci Eng Technol 8(10):441–447

    Article  Google Scholar 

  53. Akgül A et al (2013) Koroner arter baypas greftleme sonrası erken mortalitenin belirlenmesinde standart, lojistik Euroscore ve Euroscore II’nin karşılaştırılması. Anadolu Kardiyol Derg 13:425–431

    Google Scholar 

  54. Voors AA et al (2017) Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure. Eur J Heart Fail 19(5):627–634

    Article  Google Scholar 

  55. Lassus JP et al (2013) Long-term survival after hospitalization for acute heart failure-differences in prognosis of acutely decompensated chronic and new-onset acute heart failure. Int J Cardiol 168(1):458–462

    Article  Google Scholar 

  56. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni AP, Burton P, Sullivan MD, Pitt B, Poole-Wilson PA, Mann DL, Packer M (2006) The Seattle heart failure model: prediction of survival in heart failure. Circulation 113(11):1424–1433

    Article  Google Scholar 

  57. Ahmad T, Munir A, Bhatti SH, Aftab M, Raza MA (2017) Survival analysis of heart failure patients: a case study. PLoS ONE 12(7):181001

    Article  Google Scholar 

  58. Fitrianto A, Jiin RLT (2013) Several types of residuals in Cox regression model: an empirical study. Int J Math Anal 7:2645–2654

    Article  MathSciNet  Google Scholar 

  59. Kleinbaum DG, Klein M (2012) Kaplan-Meier survival curves and the log-rank test. Survival analysis. Springer, New York

    Google Scholar 

  60. Wilkinson M, Dumontier M, Aalbersberg I, Appleton G, Axton M, Baak A, Blomberg N et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3(1):1–9

    Article  Google Scholar 

  61. Zahid FM, Ramzan S, Faisal S, Hussain I (2019) Gender based survival prediction models for heart failure patients: a case study in Pakistan. PLoS ONE 14(2):0210602

    Article  Google Scholar 

  62. Boyd CR, Tolson MA, Copes WS (1987) Evaluating trauma care: The TRISS method. J Trauma 27(4):370–378

    Article  Google Scholar 

  63. Pérez A, Larrañaga P, Inza I (2006) Supervised classication with conditional Gaussian networks: Increasing the structure complexity from naive Bayes. Int J Approx Reasoning 43(1):1–25

    Article  MATH  Google Scholar 

  64. Breiman L, Friedman J, Olshen R, Stone C (1984) Classication and regression trees (statistics/probability series). CRC Press, Hoboken

    Google Scholar 

  65. Breiman L (2001) Random forests. Mach Learn 45(1):532

    Article  MATH  Google Scholar 

  66. Sharaff A, Gupta H (2019) Extra-tree classier with metaheuristics approach for email classication. In: Proc. Adv. Comput. Commun. Comput. Sci. Springer, Singapore, pp 189–197

  67. Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14:771–780

    Google Scholar 

  68. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 2001:1189–1232

    MathSciNet  MATH  Google Scholar 

  69. Gardner WA (1984) Learning characteristics of stochastic-gradient-descent algorithms: a general study, analysis, and critique. Signal Process 6(2):113–133

    Article  MathSciNet  Google Scholar 

  70. Schölkopf B, Burges C, Vapnik V (1996) Incorporating invariances in support vector learning machines. In: Proc. Int. Conf. Artif. Neural Netw. Springer, Berlin, pp 47–52

  71. Gürfidan R, Ersoy M (2021) Classification of death related to heart failure by machine learning algorithms. Adv Artif Intell Res 1(1):13–18

    Google Scholar 

  72. Desai A et al (2020) Comparison of machine learning methods with traditional models for use of administrative claims with electronic medical records to predict heart failure outcomes. JAMA Netw Open 3:1. https://doi.org/10.1001/jamanetworkopen.2019.18962

    Article  Google Scholar 

  73. Arghandabi and Shams (2020) A comparative study of machine learning algorithms for the prediction of heart disease. IJRASET 8:1. https://doi.org/10.22214/ijraset.2020.32591

    Article  Google Scholar 

  74. Bodenhofer A et al (2021) Machine learning-based risk profile classification of patients undergoing elective heart valve surgery. Eur J Cardio-Thorac Surg 2021:219. https://doi.org/10.1093/ejcts/ezab219

    Article  Google Scholar 

  75. Smith DH, Johnson ES, Thorp ML, Yang X, Petrik A, Platt RW, Crispell K (2011) Predicting poor outcomes in heart failure. Permanente J 15(4):4–11

    Article  Google Scholar 

  76. Oladimeji OO, Oladimeji O (2020) Predicting survival of heart failure patients using classification algorithms. JITCE J Inf Technol Comput Eng 4(02):90–94

    Article  Google Scholar 

  77. Seid A et al (2014) Joint modeling of longitudinal CD4 cell counts and time-to-default from HAART treatment: a comparison of separate and joint models. Electron J Appl Stat Anal 7(2):292–314

    MathSciNet  Google Scholar 

  78. Núñez J, Garcia S, Núñez E, Bonanad C, Bodí V, Miñana G, Santas E, Escribano D, Bayes GA, Pascual FD, Chorro FJ, Sanchis J (2017) Early serum creatinine changes and outcomes in patients admitted for acute heart failure: the cardio-renal syndrome revisited. Eur Heart J Acute Cardiovasc Care 6(5):430–440

    Article  Google Scholar 

  79. Akhter MW, Aronson D, Bitar F, Khan S, Singh H, Singh RP, Burger AJ, Elkayam U (2004) Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol 94(7):957–960

    Article  Google Scholar 

  80. Brisco MA, Zile MR, Hanberg JS, Wilson FP, Parikh CR, Coca SG, Tang WHW, Testani JM (2016) Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial. J Card Fail 22(10):753–760

    Article  Google Scholar 

  81. Vistarini N, Deschamps A, Cartier R (2014) Preoperative creatinine clearance affects long-term survival after off-pump coronary artery bypass surgery. Can J Cardiol 30(10):S238–S239

    Article  Google Scholar 

  82. Tomaselli ME, Tisdale JE (2018) Predictive analytics for identification of patients at risk for QT interval prolongation: a systematic review. Pharmacotherapy 38(8):813–821

    Article  Google Scholar 

  83. Kosztin AA, Tokodi M, Toser Z, Schwertner W, Boros A, Kovacs A, Perge P, Szeplaki G, Geller L, Merkely B (2019) Utilization of machine learning to identify gender-specific patterns in short-and long-term mortality after cardiac resynchronization therapy. Eur J Heart Fail 2019:2

    Google Scholar 

  84. Stasiak MM, Rozentryt P, Jankowska E, Retwinski A, Straburzynska ME, Nowalany KE, Ponikowski P, Mirek BE, Polonski L, Drozdz J (2013) Renal failure in patients with heart failure - analysis based on ESC-HF Pilot survey. Eur Heart J 34(Suppl 1):645

    Article  Google Scholar 

  85. Sutherland SM, Chawla LS, Kane GS, Hsu RK, Kramer AA, Goldstein SA, Kellum JA, Ronco C, Bagshaw SM (2016) Utilizing electronic health records to predict acute kidney injury risk and outcomes: workgroup statements from the 15th ADQI Consensus Conference. Can J Kidney Health Dis 3:99

    Article  Google Scholar 

  86. Lee HC, Yoon HK, Nam K, Cho YJ, Kim TK, Kim WH, Bahk JH (2018) Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med 7(10):322

    Article  Google Scholar 

  87. Chatterjee NA, Chae CU, Kim E, Moorthy MV, Conen D, Sandhu RK, Albert CM et al (2017) Modifiable risk factors for incident heart failure in atrial fibrillation. JACC Heart Fail 5(8):552–560

    Article  Google Scholar 

  88. Hwang SL, Liao WC, Huang TY (2014) Predictors of quality of life in patients with heart failure. Jpn J Nurs Sci 11(4):290–298

    Article  Google Scholar 

  89. UCI machine learning repository website (2021) https://archive.ics.uci.edu/ml/index.php. Acccessed 2 May 2021

  90. Bredy C, Ministeri M, Kempny A, Alonso GR, Swan L, Uebing A, Diller GP, Gatzoulis MA, Dimopoulos K (2017) New York Heart Association (NYHA) classification in adults with congenital heart disease: relation to objective measures of exercise and outcome. Eur Heart J Qual Care Clin Outcomes 4(1):51–58

    Article  Google Scholar 

  91. Johns Hopkins Rheumatology, Creatine Phosphokinase (CPK) (2019) https://www.hopkinslupus.org/lupus-tests/clinical-tests/creatinephosphokinase-cpk/. Accessed 25 Jan 2019

  92. Case LC (2019) What is a sodium blood test? https://www.healthline.com/health/sodium-blood. Accessed 25 Jan 2019

  93. Kim YT, Kim DK, Kim H, Kim DJ (2020) A Comparison of oversampling methods for constructing a prognostic model in the patient with heart failure. In: 2020 international conference on information and communication technology convergence (ICTC), pp 379–383

  94. Yang M, De Loera JA (2018) A machine learning approach to evaluate Beijing air quality

  95. Hal Daumé III (2012) A course in machine learning. http://ciml.info/dl/v0_8/ciml-v0_8-ch08.pdf. Accessed 22 Sep 2014

  96. Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. The MIT Press, Cambridge

    MATH  Google Scholar 

  97. Alpaydın E (2014) Introduction to machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  98. Harrington P (2012) Machine learning in action, 1st Edition, Manning Publications Shelter Island

  99. Kartal E (2015) Sınıflandırmaya dayalı makine öğrenmesi teknikleri ve kardiyolojik risk değerlendirmesine ilişkin bir uygulama, PhD. In: Thesis, İstanbul University

  100. Rana S, Gupta S, Phung D, Venkatesh S (2015) A predictive framework for modeling healthcare data with evolving clinical interventions, statistical analysis and data mining. ASA Data Sci J 8(3):162–182

    MATH  Google Scholar 

  101. Yang F (2018) An implementation of naive Bayes classifier. Comput Sci Comput Intell 2018:301–306

    Google Scholar 

  102. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422

    Article  MATH  Google Scholar 

  103. Liu S, Zheng H, Feng Y, Li W (2017) Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. Int Soc Opt Photon 10134:1013428

    Google Scholar 

Download references

Funding

There is no grant received from any agency (whether in the public, commercial or not-for-profit sectors) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mücella Özbay Karakuş.

Ethics declarations

Conflict of interest

The authors of the article have no relationship (either financial or personal) with any people or organizations that can affect or bias the paper’s contents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbay Karakuş, M., Er, O. A comparative study on prediction of survival event of heart failure patients using machine learning algorithms. Neural Comput & Applic 34, 13895–13908 (2022). https://doi.org/10.1007/s00521-022-07201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07201-9

Keywords

Navigation