Skip to main content
Log in

A stable GAN for image steganography with multi-order feature fusion

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Content-adaptive automatic cost learning frameworks for image steganography based on deep learning can generate a more exquisite embedding probability map within a short time; such methods have reached remarkable security performance compared with conventional handcraft-based methods. However, some issues in deep steganography are not discussed in spatial domain: (1) the key point to the design of generator has not reached clearly; and (2) existing methods are unstable of model training due to vanishing gradient problem. To investigate these issues, this paper proposes a stable GAN (generative adversarial network) for image steganography called UMC-GAN, which presents a redesigned and adjustable nested U-Shape generator and utilizes deep supervision to fuse multiple embedding probability maps to improve security performance. A novel linear-clipped embedding simulator is designed to alleviate vanishing gradient problem at the staircase regions. Extensive experiments and ablation studies show that the proposed method outperforms existing GAN-based automatic cost learning embedding frameworks, and it can be applied at high resolution through the flexible adjustment of the generator. Further investigation on the design of generator is explored by model pruning which shows that in-depth features should be captured for deep steganography to ensure the security performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://alaska.utt.fr/.

  2. http://bows2.ec-lille.fr/.

References

  1. Fridrich J, Filler T (2007) Practical methods for minimizing embedding impact in steganography. In: Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505. San Jose, CA, United States, pp 13–27. https://doi.org/10.1117/12.697471

  2. Filler T, Judas J, Fridrich J (2011) Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans Inf Forensics Secur 6(3):920–935. https://doi.org/10.1109/TIFS.2011.2134094

    Article  Google Scholar 

  3. Pevný T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. Inf Hiding. https://doi.org/10.1007/978-3-642-16435-4_13

    Article  Google Scholar 

  4. Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp 234–239. https://doi.org/10.1109/WIFS.2012.6412655

  5. Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. Eurasip J Inf Secur. https://doi.org/10.1186/1687-417X-2014-1

    Article  Google Scholar 

  6. Li B, Wang M, Huang J, Li X (2014) A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing (ICIP), pp 4206–4210. https://doi.org/10.1109/ICIP.2014.7025854

  7. Sedighi V, Cogranne R, Fridrich J (2016) Content-adaptive steganography by minimizing statistical detectability. IEEE Trans Inf Forensics Secur 11(2):221–234. https://doi.org/10.1109/TIFS.2015.2486744

    Article  Google Scholar 

  8. Westfeld A, Pfitzmann A (2000) Attacks on steganographic systems. Inf Hiding. https://doi.org/10.1007/10719724_5

    Article  Google Scholar 

  9. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur 7(3):868–882. https://doi.org/10.1109/TIFS.2012.2190402

    Article  Google Scholar 

  10. Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Selection-channel-aware rich model for steganalysis of digital images. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp 48–53. https://doi.org/10.1109/WIFS.2014.7084302

  11. Kodovsky J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Trans Inf Forensics Secur 7(2):432–444. https://doi.org/10.1109/TIFS.2011.2175919

    Article  Google Scholar 

  12. Qian Y, Dong J, Wang W, Tan T (2016) Learning and transferring representations for image steganalysis using convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp 2752–2756. https://doi.org/10.1109/ICIP.2016.7532860

  13. Xu G, Wu H-Z, Shi Y-Q (2016) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712. https://doi.org/10.1109/LSP.2016.2548421

    Article  Google Scholar 

  14. Xu G, Wu H-Z, Shi YQ (2016) Ensemble of cnns for steganalysis: An empirical study. IH&MMSec ’16, pp 103–107, New York, NY, USA. https://doi.org/10.1145/2909827.2930798

  15. Yang J, Liu K, Kang X, Wong E, Shi Y (2017) Steganalysis based on awareness of selection-channel and deep learning. In: Digital Forensics and Watermarking. https://doi.org/10.1007/978-3-319-64185-0_20

  16. Ye J, Ni J, Yi Y (2017) Deep learning hierarchical representations for image steganalysis. IEEE Trans Inf Forensics Secur 12(11):2545–2557. https://doi.org/10.1109/TIFS.2017.2710946

    Article  Google Scholar 

  17. Yedroudj M, Comby F, Chaumont M (2018) Yedroudj-net: An efficient cnn for spatial steganalysis. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 2092–2096. https://doi.org/10.1109/ICASSP.2018.8461438

  18. Yedroudj M, Chaumont M, Comby F (2018) How to Augment a Small Learning Set for Improving the Performances of a CNN-based Steganalyzer. In: Media Watermarking, Security, and Forensics, IS&T Int. Symp. on Electronic Imaging. https://doi.org/10.2352/ISSN.2470-1173.2018.07.MWSF-317. SF, California, USA

  19. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  20. Li B, Wei W, Ferreira A, Tan S (2018) Rest-net: diverse activation modules and parallel subnets-based cnn for spatial image steganalysis. IEEE Signal Process Lett 25(5):650–654. https://doi.org/10.1109/LSP.2018.2816569

    Article  Google Scholar 

  21. Boroumand M, Chen M, Fridrich J (2019) Deep residual network for steganalysis of digital images. IEEE Trans Inf Forensics Secur 14(5):1181–1193. https://doi.org/10.1109/TIFS.2018.2871749

    Article  Google Scholar 

  22. Tsang CF, Fridrich J (2018) Steganalyzing images of arbitrary size with cnns. In: IS&T International Symposium on Electronic Imaging Science and Technology. https://doi.org/10.2352/ISSN.2470-1173.2018.07.MWSF-121

  23. Yousfi Y, Butora J, Fridrich J, Giboulot Q (2019) Breaking alaska: Color separation for steganalysis in jpeg domain, pp 138–149. https://doi.org/10.1145/3335203.3335727

  24. Butora J, Fridrich J (2020) Reverse jpeg compatibility attack. IEEE Trans Inf Forensics Secur 15:1444–1454. https://doi.org/10.1109/TIFS.2019.2940904

    Article  Google Scholar 

  25. You W, Zhang H, Zhao X (2021) A siamese cnn for image steganalysis. IEEE Trans Inf Forensics Secur 16:291–306. https://doi.org/10.1109/TIFS.2020.3013204

    Article  Google Scholar 

  26. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. NIPS’14, pp 2672–2680. https://doi.org/10.5555/2969033.2969125

  27. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. IEEE Trans Neural Networks 9(5):1054–1054. https://doi.org/10.1109/TNN.1998.712192

    Article  Google Scholar 

  28. Baluja S (2017) Hiding images in plain sight: Deep steganography. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp 2066–2076. https://doi.org/10.5555/3294771.3294968

  29. Zhu J, Kaplan R, Johnson J, Fei-Fei L (2018) Hidden: hiding data with deep networks. Computer Vision - ECCV 2018:682–697. https://doi.org/10.1007/978-3-030-01267-0_40

    Article  Google Scholar 

  30. Tang W, Tan S, Li B, Huang J (2017) Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Process Lett 24(10):1547–1551. https://doi.org/10.1109/LSP.2017.2745572

    Article  Google Scholar 

  31. Yang J, Ruan D, Huang J, Kang X, Shi Y (2020) An embedding cost learning framework using gan. IEEE Trans Inf Forensics Secur 15:839–851. https://doi.org/10.1109/TIFS.2019.2922229

    Article  Google Scholar 

  32. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  33. Yang J, Ruan D, Kang X, Shi Y-Q (2019) Towards automatic embedding cost learning for jpeg steganography. In: Proceedings of the ACM Workshop on Information Hiding and Multimedia Security. IH&MMSec’19, pp 37–46. https://doi.org/10.1145/3335203.3335713

  34. Tang W, Li B, Barni M, Li J, Huang J (2021) An automatic cost learning framework for image steganography using deep reinforcement learning. IEEE Trans Inf Forensics Secur 16:952–967. https://doi.org/10.1109/TIFS.2020.3025438

    Article  Google Scholar 

  35. Tang W, Li B, Barni M, Li J, Huang J (2021) Improving cost learning for jpeg steganography by exploiting jpeg domain knowledge. arXiv:2105.03867

  36. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2020) Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39(6):1856–1867. https://doi.org/10.1109/TMI.2019.2959609

    Article  Google Scholar 

  37. Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 5967–5976. https://doi.org/10.1109/CVPR.2017.632

  38. Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing

  39. Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434

  40. Bas P, Filler T, Pevný T. (2011) ”break our steganographic system”: The ins and outs of organizing boss. In: Information Hiding, pp 59–70. https://doi.org/10.1007/978-3-642-24178-9_5

Download references

Acknowledgements

This work is supported by the National Defense Basic Scientific Research Program of China (JCKY2018603B006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Wang.

Ethics declarations

Conflict of interest

We have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, S. A stable GAN for image steganography with multi-order feature fusion. Neural Comput & Applic 34, 16073–16088 (2022). https://doi.org/10.1007/s00521-022-07270-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07270-w

Keywords

Navigation